Specific interaction theory versus Pitzer’s model in groundwaters and brines for checking equilibria/non-equilibria with calcite, gypsum, and halite: application to predict the evolution of solutions concentrated by evaporation in irrigated areas

  • Nassira SalhiEmail author
  • Abdelkader Douaoui
  • Fabienne Trolard
  • Guilhem Bourrié
Original Article


Mass transfer between aquifers, vadose zone, including soils and waters may occur at equilibrium or out of equilibrium. Irrigating with low-quality waters can result in soil salinization and/or degradation of soil structure. Checking minerals/solutions equilibria from the chemical composition of solutions implies computing activities and Saturation Indexes (SI) of minerals. In semi-arid-to-arid areas, evaporation concentrates solutions and waters evolve in different geochemical pathways, mainly saline neutral path and alkaline path, separated by bifurcations. Strong non ideality of electrolyte solutions makes it difficult to compute accurately activities and SI. The objective of this paper is to compare Pitzer’s model and Specific Interaction Theory (SIT), both now incorporated in Phreeqc 3.0. Samples can be assigned to the saline neutral path with dominance of sulfate which is the majority and with dominance of chloride as the minority. Data were twofold: (i) groundwaters were sampled in an irrigated plain, in Lower Chéliff valley (Algeria), and analyzed, they cover the range from low to medium ionic strength; (ii) data from a saline system (Chott El Jerid, Tunisia) were taken from the literature to cover the range from medium to very high ionic strength, including brines. Data were processed with both models to check equilibria. Results opposing classical assumptions are obtained: (i) calcite does not form at equilibrium and requires a specific oversaturation (\(\text {SI} \simeq 1.4\)), then relaxes to equilibrium. This is a general result that can be extended to many situations, where calcite forms, including sedimentation; (ii) gypsum, which is more soluble, forms at equilibrium; accordingly, the assumption of equilibrium at low temperature, i.e., in Earth’s surface conditions, holds for gypsum, but not for calcite; (iii) Pitzer’s model gives better results than SIT for calcite and gypsum, but SIT model gives better results for halite, while it is generally admitted that Pitzer’s model is better for \(I> {3}{\hbox { m}}\).


Pitzer Specific interaction theory Groundwaters Brines Calcite Gypsum Halite Salinisation Irrigation Alkalinity Phreeqc 



Support from the Universities of Chlef and Tipaza and INRA (France) is gratefully acknowledged.

Supplementary material

12665_2019_8139_MOESM1_ESM.xlsx (26 kb)
Supplementary material 1 (XLSX 27 kb)


  1. Appelo CAJ (2015) Principles, caveats and improvements in databases for calculating hydrogeochemical reactions in saline waters from 0 to \({{200}^\circ {\text{ C }}}\) and 1 to 1000 atm. Appl Geochem 55:62–71CrossRefGoogle Scholar
  2. Appelo CAJ, Parkhurst DL, Post VEA (2014) Equations for calculating hydrogeochemical reactions of minerals and gases such as \(\text{ CO }_2\) at high pressures and temperatures. Geochim Cosmochim Acta 125:49–67CrossRefGoogle Scholar
  3. Auque L, Vallès V, Zouggari H, Lopez P, Bourrié G (1994) Importancia de la variación de solubilidad de la mirabilita con la temperatura en la evolución geoquímica de las lagunas de los monegros (zaragoza). Rev Acad Cienc Zaragoza 49:177–189Google Scholar
  4. Barbiéro L (1994) Les sols alcalinisés sur socle dans la vallée du fleuve Niger – Origine de l’alcalinisation et évolution des sols sous irrigation. Thèse de doctorat, ENSA RennesGoogle Scholar
  5. Boulaine J (1957) Étude des sols des plaines du Chéliff. Ministére de l’Algérie, direction de l’hydraulique et de l’équipement ruralGoogle Scholar
  6. Bourrié G (1976) Relation entre le pH, l’alcalinité, le pouvoir tampon et les équilibres de \({\text{ CO }_2}\) dans les eaux naturelles. Sci Sol 3:141–159Google Scholar
  7. Bourrié G (2014) Swelling clays and salt-affected soils : demixing of Na / Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR). Eurasian J Soil Sci 3:245–253CrossRefGoogle Scholar
  8. Bradaï A, Douaoui A, Bettahar N, Yahiaoui I (2015) Improving the prediction accuracy of groundwater salinity mapping using indicator kriging method. J Irrig Drain Eng. CrossRefGoogle Scholar
  9. Bretti C, Foti C, Sammartano S (2004) A new approach in the use of sit in determining the dependence on ionic strength of activity coefficients. application to some chloride salts of interest in the speciation of natural fluids. Chem Speciat Bioavailab 16:105–110. CrossRefGoogle Scholar
  10. Brønsted J (1922) Studies on the solubility. iv. the principle of the specific interaction of ions. J Am Chem Soc 44:877–898. CrossRefGoogle Scholar
  11. Cheverry C (1974) Contribution à l’étude pédologique des polders du lac Tchad – dynamique des sels en milieu continental subaride dans les sédiments argileux et organiques. Thèse Université Louis Pasteur, StrasbourgGoogle Scholar
  12. Clegg SL, Whitfield M (1991) Activity coefficients in natural waters. CRC Press, Boca Raton, pp 279–434Google Scholar
  13. Dosso M (1980) Géochimie des sols salés et des eaux d’irrigation – aménagement de la basse vallée de l’euphrate en syrie. Thèse de docteur ingénieur, Institut National Polytechnique de ToulouseGoogle Scholar
  14. Douaoui A, Lépinard P (2010) Télédection et salinité — Cartographie de la salinité des sols de la plaine algérienne du Bas-Chéliff. Geomatic Expert pp 36–41Google Scholar
  15. Douaoui A, Walter C, Gaouar A, Hammoudi S (2001) Assessment of the topsoil structural degradation of the Lower-Cheliff Valley (Algeria). In: 4th Conference of the Working Group of Pedometrics (WG-PM), pp 19–21Google Scholar
  16. Droubi A, Fritz B, Gac J, Tardy Y (1980) Generalized residual alkalinity concept—application to prediction of the chemical evolution of natural waters by evaporation. Am J Sci 280:560–572CrossRefGoogle Scholar
  17. Eaton F (1950) Significance of carbonates in irrigation waters. Soil Sci 69:123–133CrossRefGoogle Scholar
  18. Elizalde MP, Aparicio JL (1995) Current theories in the calculation of activity coefficients-II. specific interaction theories applied to some equilibria studies in solution chemistry. Talanta 42:395–400CrossRefGoogle Scholar
  19. Garrels R, Mackenzie F (1967) Origin of the chemical composition of some springs and lakes, American Chemical Society, chap 10, pp 222–242. No. 67 in Advances in Chemistry SeriesGoogle Scholar
  20. Grenthe I, Plyasunov A (1997) On the use of semiempirical electrolyte theories for the modelling of solution chemical data. Pure Appl Chem 69:951–958CrossRefGoogle Scholar
  21. Grenthe I, Mompean F, Spahiu K, Wanner H (2013) Guidelines for the extrapolation to zero ionic strength. No. TDB-2 in Data Bank, OECD Nuclear Energy AgencyGoogle Scholar
  22. Gueddari M (1984) Géochimie et thermodynamique des évaporites continentales — Étude du lac Natron en Tanzanie et du chott El Jerid en Tunisie. No. 76 in Sciences Géologiques, Mémoire, Université Louis Pasteur, StrasbourgGoogle Scholar
  23. Gueddari M, Monnin C, Perret D, Fritz B, Tardy Y (1983) Geochemistry of brines of the chott El Jerid in southern Tunisia—applications of Pitzer’s equations. Chem Geol 39:165–178CrossRefGoogle Scholar
  24. Guggenheim E (1935) The specific thermodynamic properties of aqueous solutions of uni-univalent electrolytes. Philos Mag 19:588–643CrossRefGoogle Scholar
  25. Hardie L, Eugster H (1970) The evolution of closed basin brines. Mineral Soc Am Spec Pap 3:273–290Google Scholar
  26. Hartani T, Bradaï A, Douaoui A (2012) Exploring salinity perception in lower-Cheliff plain (Algeria). J Agric Sci Technol 2:1253–1259Google Scholar
  27. Harvie C, Weare J (1980) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–Cl–\(\text{ SO }_4\)\({\text{ H }_2\text{ O }}\) system from zero to high concentration at \({25}^\circ \text{ C }\). Geochim Cosmochim Acta 44:981–987CrossRefGoogle Scholar
  28. Harvie C, Møller N, Weare J (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–\(\text{ SO }_4\)\(\text{ OH }\)\(\text{ HCO }_3\)\(\text{ CO }_3\)\(\text{ CO }_2\)\(\text{ H }_2\text{ O }\) system to high ionic strengths at \(25^\circ \text{ C }\). Geochim Cosmochim Acta 48:723–751CrossRefGoogle Scholar
  29. Helgeson H, Brown T, Nigrini A, Jones T (1970) Calculation of mass transfer in geochemical processes involving aqueous solutions. Geochim Cosmochim Acta 34:569–592CrossRefGoogle Scholar
  30. Lemire R, Berner U, Musikas C, Palmer D, Taylor P, Tochiyama O (2013) Chemical thermodynamics of iron, Part 1, chemical thermodynamics, vol 13a. OECD/Nuclear Energy Agency Publishing, DordrechtGoogle Scholar
  31. Marlet S (1996) Alcalinisation des sols dans la vallée du fleuve Niger (Niger) – Modélisation des processus physico-chimiques et évolution des sols sous irrigation. Thèse de doctorat, École Nationale Supérieure Agronomique de Montpellier, FranceGoogle Scholar
  32. Marlet S, Job J (2006) Processus et gestion de la salinité des sols. In: Tiercelin J, Vidal A (eds) Traité d’irrigation, Tec&Doc, Lavoisier, pp 797–822Google Scholar
  33. Nasri N, Bouhlila R, Saaltink MW, Gamazo P (2015) Modeling the hydrogeochemical evolution of brine in saline systems: Case study of the sebkha of oum el khialate in south east tunisia. Appl Geochem 55:160–169. CrossRefGoogle Scholar
  34. Parkhurst D, Appelo C (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigation Report 99-4259, US Department of the Interior, US Geological SurveyGoogle Scholar
  35. Parkhurst D, Appelo C (2013) Description of input and examples for PHREEQC (version 3)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Department of the Interior, US Geological Survey.
  36. Pitzer K (1973) Thermodynamics of electrolytes, i. theoretical basis and general equations. J Phys Chem 77(5):268–277CrossRefGoogle Scholar
  37. Pitzer K, Mayorga G (1973) Thermodynamics of electrolytes, ii. activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308CrossRefGoogle Scholar
  38. Scatchard G (1976) Equilibrium in Solutions and Surface and Colloid Chemistry. Harvard University Press, CambridgeCrossRefGoogle Scholar
  39. Sjöberg E (1978) Kinetics and mechanism of calcite dissolution in aqueous solutions at low temperatures. Stockh Contrib Geol 32:1–96Google Scholar
  40. Stumm W, Morgan JJ (1970) Aquatic chemistry—an introduction emphasizing chemical equilibria in natural waters. Wiley Interscience, HobokenGoogle Scholar
  41. Szabolcs I (1996) An overview on soil salinity and alkalinity in Europe, European Society for Soil Conservation, chap 1, pp 1–12. Special publicationGoogle Scholar
  42. Teng H, Dove PM, De Yoreo J (2000) Kinetics of calcite growth: surface processes and relationships to macroscopic rate laws. Geochim Cosmochim Acta 64:2255–2266CrossRefGoogle Scholar
  43. Valleron-Blanc M, Thiry M (1993) Minéraux argileux, paléoaltérations, paléopaysages et séquence climatique: exemple du Paléogène continental de France. In: Paquet H, Clauer N (eds) Sédimentologie et Géochimie de la Surface — Colloque à la mémoire de Georges Millot, Institut de France, pp 199–216Google Scholar
  44. Vallès V, N’Diaye M, Bernadac A, Tardy Y (1989) Geochemistry of water in the Kouroumari region, Mali – Al, Si and Mg in water concentrated by evaporation: development of a model. Arid Soil Res Rehab 3:21–32CrossRefGoogle Scholar
  45. Vallès V, Pachepsky I, Ponizovsky A (1991) Invariant criteria for irrigation water quality assessment in arid and semi-arid regions. In: Genesis and control of fertility of salt affected soils, ISSS subcommission on salt affected soils, pp 330–333Google Scholar
  46. Van Beek C, Van Breemen N (1973) The alkalinity of alkali soils. J Soil Sci 24(1):129–136CrossRefGoogle Scholar
  47. Yahiaoui I, Douaoui A, Zhang Q, Ziane A (2015) Soil salinity prediction in the lower cheliff plain (algeria) based on remote sensing and topographic feature analysis. J Arid Land 7:795–805CrossRefGoogle Scholar
  48. Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth-Sci Rev 58:343–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Nature and Life Sciences, Agricultural Production and Sustainable Valorization of Natural Resources Laboratory (UKHM)Hassiba Benbouali University of ChlefChlefAlgeria
  2. 2.Agricultural Production and Sustainable Valorization of Natural Resources Laboratory (UKHM)University Centre of TipazaTipazaAlgeria
  3. 3.INRA, UAPV, UMR 1114 EmmahAvignonFrance

Personalised recommendations