Advertisement

Installation of a thermal energy storage site in an abandoned mine in Picardy (France). Part 1: Selection criteria and equipment of the experimental site

  • Gombert PhilippeEmail author
  • Gueye Abdoulaye
  • Ben Hamed Haïkel
  • Beji Hassen
  • Laouafa Farid
Original Article
  • 65 Downloads

Abstract

As part of the new French law on energy transition, the Demosthene research project is studying the possibility of reusing old abandoned mines to store thermal energy in the Picardy region. The aim is to store the heat required for a small collective unit, which corresponds to a volume of water of 2000–8000 m3, depending on the temperature (from 15 to 70 °C). An inventory shows around 3700 theoretically available sites in this region. These are mostly shallow dry mines, or mines that are partially flooded with around 1 m of water depth. Based on this water depth and an extraction ratio of 75%, the required mine area is approximately 10,000 m2. From the 40 sites that have a sufficient surface area, only 1 is naturally flooded, although statistically many others will exist that are currently not known. For this experimental site to be reproducible, the decision was made to select dry mines but with a sufficient area to achieve an artificial flooding device. Theoretically, this represents more than a thousand sites in Picardy. The most interesting one is the old limestone mine of Saint-Maximin, where a sealed basin can be built. Before installing an experimental underground thermal energy storage basin in this site, the thermomechanical and hydrothermal behaviors were modeled. The aim was to optimize the position of the various sensors that will be used to monitor the basin, and to predict the future deformations induced on the walls by the thermal variations. A 100-m3 basin, sealed with a liner, was built and fitted with 18 sensors to measure temperature, humidity and strain. These sensors allow the stored water, the rock walls and the surrounding atmosphere to be monitored. This device must now operate for 6 months, i.e. a complete heating–cooling cycle, and its results will be analyzed.

Keywords

Underground storage Thermal energy storage Mine Groundwater Inventory Basin France 

Notes

Acknowledgements

The authors thank the Picardy region for the Grant awarded to the Demosthene project.

References

  1. Allen RD, Kannberg LD, Raymond JR (1984) Seasonal thermal energy storage. Pacific Northwest Laboratory, technical report PNL-5067, p 130Google Scholar
  2. Arnould M, Deveughele M, Efforsat J (1983) Utilisation de carrières souterraines de la région parisienne pour stockage intersaisonnier d’énergie solaire pour l’habitat. La Houille Blanche 3(4):283–288Google Scholar
  3. Axelsson CL, Carlstedt A, Johnson J, Karlqvist L, Lintu Y, Olsson T, Särnblad L (1985) Hydrogeological investigations at the storage cavern for heated water at Avesta. In: Hydrogeology in the service of man, proc. of the 18th cong. of the int. assoc. of hydrogeologists, Cambridge, pp 104–116Google Scholar
  4. Barron RF, Barron BR (2012) Design for thermal stresses. Wiley, New YorkGoogle Scholar
  5. Bourbiaux B (2011) ATES contribution to the housing energy balance: a simple assessment methodology. Oil Gas Sci Technol Rev IFP Energies Nouvelles Nr 66(1):21–36CrossRefGoogle Scholar
  6. Brunström C, Larsson M, Holst P, Zinko H, Hillström CG (1985) The Lyckebo rock cavern seasonal storage plant after one year of operation. Sunworld 9(3):93–95Google Scholar
  7. Chwieduk D (1997) Underground thermal energy storage in Poland. http://intraweb.stockton.edu/eyos/energy_studies/content/docs/proceedings/CHWIE.PDF. Accessed 24 Oct 2016
  8. Courtois N, Marchal JP, Menjoz A, Monnot P, Noël Y, Petit V, Thiéry D, Grisey A, Grasselly D (2007) Application du stockage thermique en aquifère au chauffage et au refroidissement de serres maraîchères en France: étude de préfaisabilité. Rapport BRGM/RP 55481-FRGoogle Scholar
  9. Dannemand AJ, Bødker L, Jensen MV (2013) Large thermal energy storage at Marstal district heating. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris 2013, pp 3351–3354Google Scholar
  10. Desmedt J, Hoes H, Van Bael J (2006) Status of underground thermal energy storage in Belgium. https://intraweb.stockton.edu/eyos/energy_studies/content/docs/FINAL_PAPERS/3A-3.pdf. Accessed 24 Oct 2016
  11. DGALN (2011) Réglementation thermique 2012: un saut énergétique pour les bâtiments neufs. Direction Générale de l’Aménagement, du Logement et de la Nature, avril 2011Google Scholar
  12. Djizanne H, Bérest P, Brouard B (2012) Tensile effective stresses in hydrocarbon storage caverns. In: Solution mining res. inst., fall 2012 technical conf. Bremen, Germany, 1–2 October 2012Google Scholar
  13. Fjaer E, Holt RM, Horsrud P, Raaen AM, Risnes R (1992) Petroleum related rock mechanics. Elsevier, AmsterdamGoogle Scholar
  14. Fogelholm CJ, Gebremedhin A, Kim S, Pedersen L, Savola T, Stang J, Tveit TM, Zinko H (2008) Improved cogeneration and heat utilization in DH networks. In: The 11th int. symp. on district heating and cooling, August 31–September 2, 2008, Reykjavik, Iceland, pp 1–2Google Scholar
  15. Gedung H, Margen P (1988) Converted oil cavern used for thermal energy storage in STES. Newsletter 10:2Google Scholar
  16. Gurtin ME, Fried E, Anand L (2009) The mechanics and thermodynamics of continua. Cambridge University Press, CambridgeGoogle Scholar
  17. Hellström G (2012) UTES experiences from Sweden. In: Underground thermal energy storage seminar. 31 May 2012, LondonGoogle Scholar
  18. Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New YorkGoogle Scholar
  19. IEA (1983) Central solar heating plants with seasonal storage. In: Int. energy agency, solar heating and cooling program, task VII, June 1983, p 212Google Scholar
  20. INERIS (2016) Le stockage souterrain dans le contexte de la transition énergétique: maîtrise des risques et impacts. Dossier INERIS Références, septembre 2016, http://www.ineris.fr. Accessed 25 July 2018
  21. Kabuth A, Dahmke A, Beyer C, Bilke L, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke UJ, Köber R, Rabbel W, Schanz T, Schäfer T, Würdemann H, Bauer S (2016) Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environ Earth Sci 76:23.  https://doi.org/10.1007/s12665-016-6319-5 CrossRefGoogle Scholar
  22. Martna J (1983) The Avesta research plant for hot water storage—state of the project, vol 16. Swedish Council for Building Research, Stockholm, Suède, 1983, pp 367–372Google Scholar
  23. Midttomme K, Banks D, Kalskin Ramstad R, Saether OM, Skarphagen H (2008) Ground-source heat pumps and underground thermal energy storage: energy for the future. Geol Surv Nor Spec Publ 11:93–98Google Scholar
  24. Montjoie A (1981) Stockage de chaleur dans les excavations à ciel ouvert ou souterraines. Revue Française de Géotechnique 14BIS:241–247CrossRefGoogle Scholar
  25. Nielsen K (2003) Thermal energy storage—a state-of-the-art. In: A report within the research program smart energy-efficient buildings at NTNU and SINTEF 2002–2006Google Scholar
  26. Paksoy HO, Andersson O, Abaci S, Evliya H, Turgut B (2000) Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in aquifer. Renew Energy 19:117–122CrossRefGoogle Scholar
  27. Sanner B, Bartels J (2009) Thermal energy storage in aquifers three decades of experience gained, and what are future prospects? In: EGEC, IFP. Deep saline aquifers for geological storage of CO2 and energy, Rueil-Malmaison, France, 17 April 2009Google Scholar
  28. Seibt P, Kabus F (2006) Aquifer thermal energy storage-projects implemented in Germany. In: Proc. ECOSTOCK 2006, Stockton, NJ, USAGoogle Scholar
  29. Sipilä K (1990) Converting an old rock cavern into heat storage in Finland. Fernwärme Int Dist Heat Fernwärme Chauffage Urbain 19:382–836Google Scholar
  30. Somerton WH (1992) Thermal properties and temperature-related behavior of rock/fluid systems. Elsevier, AmsterdamGoogle Scholar
  31. Tritsch JJ (2007) Mise en sécurité des cavités souterraines d’origine anthropique: surveillance–traitement. In: Guide technique. Rapport INERIS-DRS-07-86042-02484A, 15/02/2007Google Scholar
  32. Verhoeven R, Willems E, Harcouët-Menou V, De Boever E, Hiddes L, Op’t Veld P, Demollin E (2014) Minewater 2.0 project in Heerlen the Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Energy Proced 46:58–67.  https://doi.org/10.1016/j.egypro.2014.01.158 CrossRefGoogle Scholar
  33. Walton M, McSwiggen P (1982) Heat storage in deep mines at Ely, Minesota. In: STES Newsletter, September 1982, vol IV, n°4Google Scholar
  34. Wille A, Lottner V (2006) R&D program on thermal energy storage in Germany. In: Proc. ECOSTOCK 2006, Stockton, NJ, USAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INERIS, Parc Technologique AlataVerneuil-en-HalatteFrance
  2. 2.Laboratoire des Technologies InnovantesUniversité de Picardie Jules Verne d’Amiens, Avenue des Facultés le BaillyAmiens CedexFrance

Personalised recommendations