Ice caves of the Siberia: genesis and morphological features

  • E. V. TrofimovaEmail author
Original Article


The paper is devoted to the first complex research of ice glaciation in the frame work of a huge territory of the Siberia. Different types of underground cavities by the origin of the coldness and accumulation of snow and ice are considered; the morphological types of cave ice deposits are distinguished; the volumes of cave glaciation by the geographical regions are given. Taking into consideration the genesis of cave ice and the morphological peculiarities of cave ice deposits, a system of topographical signs for the presentation of cave glaciation on the maps is proposed. The assessment of ice cave degradation during the 30-year period of observations is displayed.


Cave ice Genesis Classification Ice cave degradation Siberia 



Thanks to the Russian Society of Natural Protection and the Russian Geographical Society for helping in speleological expedition’s organization.


  1. Alekseev VR, Belyak VI (1970) Cave ice of the Southern Siberia. News Mosc State Univ 1:59–65 (in Russian) Google Scholar
  2. Bazarova EP (2013) About cryogenic mineralization in Onot caves (Irkutsk region). Mineral Technog 14:140–149 (in Russian) Google Scholar
  3. Bella P (2018) Ice surface morphology. In: Perşoiu A, Lauritzen S-E (eds) Ice caves, Elsevier, New York, pp 69–96CrossRefGoogle Scholar
  4. Bersenev UI (1983) Karst of the island Sakhalin and conditions of its development. In: Pushkar VS, Korotky AM (eds) Palaeogeographic analysis and stratigraphy of the Far East anthropogen. Far-Eastern center of the Russian Academy of Sciences, Vladivostok, pp 50–68 (in Russian) Google Scholar
  5. Bersenev UI (1989) Karst of the Far East. Science, Moscow (in Russian) Google Scholar
  6. Dmitriev VE (1972) About the ice formations in caves of Kuznetsky Alatau and Batenevsky Mountain-Ridge. Quest Geogr Kuzbass Mt Altai 6:65–69 (in Russian) Google Scholar
  7. Dmitriev VE (1980) Cave glaciation as a part of the global glaciosphere. In: Karst of Far East and the Siberia. To the question of complex approach to the Ice cave exploration. Far-Eastern center of the Russian Academy of Sciences, Vladivostok, pp 130–145 (in Russian) Google Scholar
  8. Feurdean A, Perşoiu A, Pazdur A, Onac BP (2011) Evaluating the paleoecological potential of pollen recovered from ice in caves: a case study from Scarişoara Ice cave, Romania. Rev Paleobot Palynol 165:1–10CrossRefGoogle Scholar
  9. Fuhrmann K (2007) Monitoring the disappearance of a perennial ice deposit in Merril Cave. J Cave Karst Stud 69(2):256–265Google Scholar
  10. Glaciological dictionary (1981) Ed. Academic Kotlyakov V.M. Hydrometeoizdat, LeningradGoogle Scholar
  11. Gmelin JG (1751–1752) Reise durch Sibirien, von dem Jahr 1733 bis 1743, Theiln III. Vandenhoecks, GöttingenGoogle Scholar
  12. Gradziński M, Hercman H, Peresviet-Soltan A, Zelinka J, Jelonek M (2016) Radiocarbon dating of fossil bats from Dobšina Ice cave (Slovakia) and potential paleoclimatic implications. Ann Soc Geol Pol 86:341–350. CrossRefGoogle Scholar
  13. Gvosdetsky NA, Mikhailov NI (1987) Physical geography of the URSS. Asian division. Moscow, Vishaya shkola (in Russian) Google Scholar
  14. Holmlund P, Onac BP, Hansson M, Holmgren K, Mörth M, Nyman M, Perşoiu A (2005) Assessing the palaeoclimate potential of cave glaciers: the example of Scărişoara Ice cave (Romania). Geogr Ann 87(1):193–201CrossRefGoogle Scholar
  15. Kasimtsev SV, Zhdanov MN (1985) Ice caves of the southeastern Zabaikali’e. Notes Zabaikalsky Filial Geogr Soc URSS 118:55–56 (in Russian) Google Scholar
  16. Kern Z (2018) Dating cave ice deposits. In: Perşoiu A, Lauritzen S-E (eds) Ice caves, Elsevier, New York, pp 109–122CrossRefGoogle Scholar
  17. Kern Z, Perşoiu A (2013) Cave ice—the imminent loss of untapped mid-latitude cryospheric palaeoenvironmental archives. Quat Sci Rev 67:1–7. CrossRefGoogle Scholar
  18. Kern Z, Thomas S (2014) Ice level changes from seasonal to decadal time-scales observed in lava tubes, Lava Beds National Monument, NE California, USA. Geogr Fisica Dinamica Quat 37:151–162. CrossRefGoogle Scholar
  19. Kern Z, Széles E, Horvatinčić N, Fórizs I, Bočić N, Nagy B (2011) Glaciochemical investigations of the ice deposit of Vukušić Ice cave, Velebit Mountain, Croatia. Cryosphere 5: 485–494, CrossRefGoogle Scholar
  20. Luetscher M (2005) Processes in Ice caves and their significance for paleoenvironmental reconstructions, a case of study from the Jura Mountains. PhD Thesis University of ZürichGoogle Scholar
  21. Luetscher M (2013) Glacial processes in caves. In: Frumkin A (ed) Treatise on Geomorphology, vol 6. Karst Geomorphology. Academic Press, San Diego, pp 258–266. CrossRefGoogle Scholar
  22. Luetscher M, Jeannin PY (2004) A process-based classification of alpine Ice caves. Theor Appl Karstol 17:5–10Google Scholar
  23. Luetscher M, Bolius D, Schwikowski M, Schotterer U, Smart PL (2007) Comparison of techniques for dating of subsurface ice from Monlesi Ice cave, Switzerland. J Glaciol 53:374–384CrossRefGoogle Scholar
  24. Marinin AV (1969) The Kuldukskaya Ice cave. Notes Altai Filial Geogr Soc URSS 9:22–33 (in Russian) Google Scholar
  25. Marinin AV (1990) Karst and caves of the Altai. Novosibirsky State Pedagogical Institute, Novosibirsk (in Russian) Google Scholar
  26. Marinin AV (2003) The Kuldukskaya cave is the most Ice cave of the Altai. In: Dublyansky VN (ed) Kungur Ice cave. Zvezda, Kungur, pp 244–246 (in Russian) Google Scholar
  27. Mavlyudov BR, Kadebskaya OI (2018) Ice caves in Russia In: Perşoiu A, Lauritzen S-E (eds) Ice caves, Elsevier, New York, pp 529–610Google Scholar
  28. Mavlyuodov BR (2018) Ice genesis and types of Ice caves. In: Perşoiu A, Lauritzen S-E (eds) Ice caves, Elsevier, New York, pp 34–68Google Scholar
  29. Meyer C (2018) History of Ice cave research. In: Perşoiu A, Lauritzen S-E (eds) Ice caves, Elsevier, New York, pp 5–20CrossRefGoogle Scholar
  30. Ohata T, Furukawa T, Osada K (1994) Glacioclimatological study of perennial ice in the Fuji cave, Japan Part 2. Interrannual variation and relation to climate. Arctic, Antarctic and Alpine Resources 26: 238–244Google Scholar
  31. Orombelli G (2005) Cambiamenti climatici. Geogr Fisica Dinamica Quat. 7: 15–24Google Scholar
  32. Perşoiu A (2018) Paleoclimatic significance of Cave Ice. In: Perşoiu A, Lauritzen S-E (eds) Ice caves, Elsevier, New York, pp 189–198CrossRefGoogle Scholar
  33. Perşoiu A, Onac BP, Wynn JG, Blaauw M, Ioniţă M, Hansson M (2017) Holocene winter climate variability in Central and Eastern Europe. Sci Rep 7:1196CrossRefGoogle Scholar
  34. Philippov AG, Shevelev AS (2011) Genesis and age of underground ices of the Bolshaya Baidinsakya cave at Baikal In Northern Karst Systems in our changing environment Pinega-Golubino: 133–142 (in Russian) Google Scholar
  35. Sanwal J, Kotlia BS, Rajendran C, Ahmad SM, Rajendran K, Sandiford M (2015) Climatic variability in Central Indian Himalaya during the last similar to 1800 years: evidence from a high resolution speleothem record. Quat Int 304:183–192CrossRefGoogle Scholar
  36. Spassky G (1834) Lurgikanskaya cave. Mt J 3(8):315–319 (in Russian) Google Scholar
  37. Spötl C, Reimer PJ, Luetscher M (2014) Long-term mass balance of perennial firn and ice in an Alpine cave (Austria): Constraints from radiocarbon-dated wood fragments. Holocene 24(2):165–175. CrossRefGoogle Scholar
  38. Strahlenberg PhJ (1730) Das Nord und Östliche Theil von Europa und Asia. Verlegung des Autoris, StockholmGoogle Scholar
  39. Trofimova E (2006) Cave ice of Lake Baikal as an indicator of climatic changes. Doklady Earth Sci Geogr 410(1):113–116. CrossRefGoogle Scholar
  40. Trofimova EV (2007) Genesis and the morphological peculiarities of the cave ice deposits of Lake Baikal. In: Zelinka J (ed) Proceedings of the 2nd International Workshop on Ice caves (IWIC-2), Knižné centrum-vydavatel’stvo, Liptovsky Mikulas: 77–81Google Scholar
  41. Trofimova EV (2009) Ice caves of Irkutsk amphitheatre as objects of natural heritage. Data Glaciol Stud 107:183–186Google Scholar
  42. Trofimova E (2010) Gestion patrimoniale des grottes karstiques de la region d’Irkoutsk (Sibérie, Russie). Karstol Mémoires 17:146–150Google Scholar
  43. Turri S, Maggi V, Bini A (2009a) Ice caves as natural archives in the paleoclimatic studies. Data Glaciol Stud 107:163–169. CrossRefGoogle Scholar
  44. Turri S, Trofimova E, Bini V, Maggi V (2009b) Ice caves scientific research history: from XV to XIX centuries. Data Glaciol Stud 107:156–162. CrossRefGoogle Scholar
  45. Vaks A, Gutareva OS, Breitenbach SFM et al (2013) Speleothems reveal 500,000-Year history of Siberian Permafrost. Science 340:183–186CrossRefGoogle Scholar
  46. Vologodsky GP (1975) Karst of Irkutsk amphitheatre. Science, Moscow (in Russian) Google Scholar
  47. Wen X, Liu Z, Chen Z, Brady E, Noone D, Zhu Q, Guan J (2016) Modeling precipitation delta O-18 variability in East Asia since the last glacial maximum: temperature and amount effects across different timescales. Clim Past 12:2077–2085. CrossRefGoogle Scholar
  48. Yonge CJ, MacDonald WD (1999) The potential of perennial cave ice in isotope palaeoclimatology. Boreas 28(3):357–362CrossRefGoogle Scholar
  49. Zheleznyak II, Malchikova IU (2004) Stability of the caves Heetei in course of the exploitation of Ust-Borzinskogo limestone’s mineral. In: Dublyansky VN (ed) Proceedings of the International Symposium “Karstology—XXI century: theoretical and practical significance”, Zvezda, Perm, pp 368–370 (in Russian, abstract in English) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of GeographyRussian Academy of SciencesMoscowRussia

Personalised recommendations