Investigation of the source of acidification in an aquifer in Northern Germany

  • Georg J. HoubenEmail author
  • Stephan Kaufhold
  • Jan Dietel
  • Herbert Röhm
  • Jens Gröger-Trampe
  • Jürgen Sander
Original Article


Shallow groundwater in the Nethen well field, NW Germany, is affected by acidification, accompanied by elevated ferrous iron and sulphate concentrations. The acidity results in the mobilization of aluminum to groundwater which is subsequently re-precipitated in deeper, less acidic layers. This, in turn, caused the clogging of a water well by aluminum hydroxide phosphate. Analyses of the regional geological framework and both groundwater and sediment samples revealed that acid sulphate soils, although not uncommon in the region, and acid rain are not the cause of the acidification. The unconfined aquifer contains pyrite, which is exposed to oxygen during the partial dewatering of the aquifer during pumping, especially in the cone of depression. Nitrate, stemming from agricultural activities, may contribute to the pyrite oxidation but dewatering is the main cause. Both the oxidation of pyrite and the subsequent acid release influence the mobilization of trace elements.


Acidification Pyrite oxidation Aluminum Cone of depression 



The authors would like to thank the Oldenburgisch-Ostfriesischer Wasserverband (OOWV), Brake, Germany for their support. The constructive comments by two anonymous reviewers are gratefully acknowledged.


  1. Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14(12–13):1139–1145CrossRefGoogle Scholar
  2. Beek CGEM, van Hettinga FAM, Straatman R (1989) The effect of manure spreading and acid deposition upon groundwater quality at Vierlingsbeek, The Netherlands. IAHS Publ 185:155–162Google Scholar
  3. Belzile N, Lebel J (1986) Capture of arsenic by pyrite in near-shore marine sediments. Chem Geol 54:279–281CrossRefGoogle Scholar
  4. Beyn F, Matthias V, Dähnke K (2014) Changes in atmospheric nitrate deposition in Germany—an isotopic perspective. Environm Pollut 194:1–10CrossRefGoogle Scholar
  5. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. Treatise Geochem 9:149–204CrossRefGoogle Scholar
  6. Böhlke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res 38(7):1–23CrossRefGoogle Scholar
  7. Böttcher J, Strebel O, Voerkelius S, Schmidt H-L (1990) Using isotope fractionation of nitrate–nitrogen and nitrate–oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–425CrossRefGoogle Scholar
  8. Bouwman AF, Van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141(1–4):349–382CrossRefGoogle Scholar
  9. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, WeinheimCrossRefGoogle Scholar
  10. Dent DL, Pons LJ (1995) A world perspective on acid sulphate soils. Geoderma 67(3–4):263–276CrossRefGoogle Scholar
  11. Engesgaard P, Kipp KL (1992) A geochemical transport model for redox-controlled movement of mineral fronts in ground water flow systems: a case of nitrate removal by oxidation of pyrite. Water Resour Res 28(10):2829–2843CrossRefGoogle Scholar
  12. Fest EPMJ, Temminghoff EJM, Griffioen J, Van Riemsdijk WH (2005) Proton buffering and metal leaching in sandy soils. Environ Sci Technol 39(20):7901–7908CrossRefGoogle Scholar
  13. Franken G, Postma D, Duijnisveld WHM, Böttcher J, Molson J (2009) Acid groundwater in an anoxic aquifer: reactive transport modelling of buffering processes. Appl Geochem 24(5):890–899CrossRefGoogle Scholar
  14. Frind E, Duijnisveld WHM, Strebel O, Boettcher J (1990) Modeling of multicomponent transport with microbial transformation in groundwater: the Fuhrberg case. Water Resourc Res 26(8):1707–1719Google Scholar
  15. Galloway JN, Likens GE, Edgerton ES (1976) Acid precipitation in the Northeastern United States: pH and acidity. Science 194(4266):722–724CrossRefGoogle Scholar
  16. Gröger J, Franke J, Hamer K, Schulz HD (2009) Quantitative recovery of elemental sulfur and improved selectivity in a chromium-reducible sulfur distillation. Geostand Geoanal Res 33(1):17–27CrossRefGoogle Scholar
  17. Hansen BK, Postma D (1995) Acidification, buffering, and salt effects in the unsaturated zone of a sandy aquifer. Klosterhede Denmark Water Resour Res 31(11):2795–2809CrossRefGoogle Scholar
  18. Houben GJ, Martiny A, Bäßler N, Langguth H-R, Plüger WL (2001) Assessing the reactive transport of inorganic pollutants in groundwater of the Bourtanger Moor area (NW Germany). Environ Geol 41(3/4):480–488Google Scholar
  19. Houben GJ, Sitnikova MA, Post VEA (2017) Terrestrial sedimentary pyrites as a potential source of trace metal release to groundwater—a case study from the Emsland, Germany. Appl Geochem 76:99–111CrossRefGoogle Scholar
  20. Houben GJ, Koeniger P, Schloemer S, Gröger-Trampe J, Sültenfuß J (2018) Comparison of depth-specific groundwater sampling methods and their influence on hydrochemistry, water isotopes and dissolved gases—experiences from the Fuhrberger Feld, Germany. J Hydrol 557:182–196CrossRefGoogle Scholar
  21. Hrkal Z (2001) Vulnerability of groundwater to acid deposition, Jizerské Mountains, northern Czech Republic: construction and reliability of a CIS-based vulnerability map. Hydrogeol J 9(4):348–357CrossRefGoogle Scholar
  22. Hrkal Z, Prchalová H, Fottová D (2006) Trends in impact of acidification on groundwater bodies in the Czech Republic; an estimation of atmospheric deposition at the horizon 2015. J Atmos Chem 53(1):1–12CrossRefGoogle Scholar
  23. Huerta-Diaz MA, Tessier A, Carignan R (1998) Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl Geochem 13(2):213–233CrossRefGoogle Scholar
  24. Ingvar Nilsson S, Bergkvist B (1983) Aluminium chemistry and acidification processes in a shallow podzol on the Swedish westcoast. Water Air Soil Pollut 20(3):311–329CrossRefGoogle Scholar
  25. Johnson NM, Driscoll CT, Eaton JS, Likens GE, McDowell WH (1981) ‘Acid rain’, dissolved aluminum and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire. Geochim Cosmochim Acta 45(9):1421–1437CrossRefGoogle Scholar
  26. Kaufhold S, Houben G, Dietel J, Bertmer M, Dohrmann R (2016) Characterization of aluminum phosphate nanoparticles formed in a water well. J Nanoparticle Res 18(9):273CrossRefGoogle Scholar
  27. Kjøller C, Postma D, Larsen F (2004) Groundwater acidification and the mobilization of trace metals in a sandy aquifer. Environ Sci Technol 38(10):2829–2835CrossRefGoogle Scholar
  28. Kölle W, Strebel O, Böttcher J (1982) Formation of sulfate by microbial denitrification in a reducing aquifer. Water Supply 3:35–40Google Scholar
  29. Larsen F, Postma D (1997) Nickel mobilization in a groundwater well field: release by pyrite oxidation and desorption from manganese oxides. Environ Sci Technol 31(9):2589–2595CrossRefGoogle Scholar
  30. Lowers HA, Breit GN, Foster AL, Whitney J, Yount J, Uddin MN, Muneem AA (2007) Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochim Cosmochim Acta 71(11):2699–2717CrossRefGoogle Scholar
  31. Lükewille A, Van Breemen N (1992) Aluminium precipitates from groundwater of an aquifer affected by acid atmospheric deposition in the Senne, Northern Germany. Water Air Soil Pollut 63(3–4):411–416CrossRefGoogle Scholar
  32. Meesenburg H, Meiwes KJ, Rademacher P (1995) Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air Soil Pollut 85(2):611–616CrossRefGoogle Scholar
  33. Morse JW, Luther GW (1999) Chemical influences on trace-metal interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378CrossRefGoogle Scholar
  34. Mulder J, Van Grinsven JJM, Van Breemen N (1987) Impacts of acid atmospheric deposition on woodland soils in The Netherlands: III. Aluminum chemistry. Soil Sci Soc Am J 51(6):1640–1646CrossRefGoogle Scholar
  35. Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined aquifer: water chemistry, reduction processes and geochemical modeling. Water Resour Res 278:2027–2045CrossRefGoogle Scholar
  36. Powell B, Martens M (2005) A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Marine Pollut Bull 51(1–4):149–164CrossRefGoogle Scholar
  37. Price RE, Pichler T (2006) Abundance and mineralogical associations of naturally occurring arsenic in the Suwannee Limestone. Upper Floridan Aquifer Chem Geol 228:44–56CrossRefGoogle Scholar
  38. Sawhney BL (1960) Aluminium interlayers in clay minerals, montmorillonite and vermiculite: laboratory synthesis. Nature 187:261–262CrossRefGoogle Scholar
  39. Schoonen MAA (2004) Mechanisms of sedimentary pyrite formation. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry—past and present. Geological Society of America Special Papers, vol 379, pp 117–134Google Scholar
  40. Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1(1):1–34CrossRefGoogle Scholar
  41. Singer PC, Stumm W (1970) Acid mine drainage: the rate-determining step. Science 167:1121–1123CrossRefGoogle Scholar
  42. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568CrossRefGoogle Scholar
  43. Tamura T (1958) Identification of clay minerals from acid soils. Eur J Soil Sci 9(1):141–147CrossRefGoogle Scholar
  44. Thomas GW (1996) Soil pH and soil acidity. In: Methods of soil analysis, Part 3, chemical methods book series, No. 5. Soil Science Society of America, Madison, pp 321–352Google Scholar
  45. Zhang Y-C, Slomp CP, Broers HP, Passier HF, Cappellen PV (2009) Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochim Cosmochim Acta 73(22):6716–6726CrossRefGoogle Scholar
  46. Zhang Y-C, Slomp C, Broers HP, Bostick B, Passier HF, Boettcher ME, Omoregie EO, Lloyd JR, Polya DA, Van Cappellen P (2012) Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer. Chem Geol 300:123–132CrossRefGoogle Scholar
  47. Zhang Y-C, Prommer H, Broers HP, Slomp CP, Greskowiak J, Van Der Grift B, Van Cappellen P (2013) Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer. Environm Sci Technol 47(18):10415–10422Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Georg J. Houben
    • 1
    Email author
  • Stephan Kaufhold
    • 1
  • Jan Dietel
    • 1
  • Herbert Röhm
    • 2
  • Jens Gröger-Trampe
    • 2
  • Jürgen Sander
    • 3
  1. 1.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
  2. 2.Landesamt für Bergbau, Energie und Geologie (LBEG)HannoverGermany
  3. 3.Oldenburgisch-Ostfriesischer Wasserverband (OOWV)BrakeGermany

Personalised recommendations