Advertisement

Evaluation of potentially toxic elements’ (PTEs) vertical distribution in sediments of Gafsa–Metlaoui mining basin (Southwestern Tunisia) using geochemical and multivariate statistical analysis approaches

  • Faten KhelifiEmail author
  • Houda Besser
  • Yosra Ayadi
  • Guijian Liu
  • Balal Yousaf
  • Samia Harabi
  • Sana Bedoui
  • Karim Zighmi
  • Younes Hamed
Original Article
  • 56 Downloads

Abstract

The present study represents a preliminary geochemical investigation concerning the vertical distribution of potentially toxic elements (PTEs) in the sediments of an industrial site in Gafsa–Metlaoui mining basin of phosphate using multivariate statistical analysis. It attempts to outline the possible source of the PTEs and their relation with soil texture, soil profile and human activities. Consequently, 14 sub-samples were collected from a sediment core of 30 cm depth. The PTEs ranged as follows: Zn > Cd > Cr > Pb with mean concentrations of 194.5, 26.92, 13.42 and 8.07 mg kg−1, respectively. Pearson’s correlation matrix showed positive correlations between Zn, Cd, P2O5, CaO, SiO2 and total organic carbon except for Pb and Cr, which seem to be interrelated, although they correlated negatively with all parameters. The principal component analysis (PCA) extracted three principal components representing 87.25% of the total variance. Similarly, hierarchical cluster analysis (HCA) confirmed the results obtained by the PCA, classifying the analyzed parameters into three different groups. The obtained data imply that PTEs concentrations in the study area are influenced by various factors such as anthropogenic and lithogenic sources. Zn, Cd, P2O5, CaO, SiO2 and organic matter (OM) probably have the same anthropogenic origin related to the phosphate industry, while Cr and Pb share the same natural source. The sediment contamination assessment proved that the samples of the study area are “heavily polluted” with Cd, “moderately” to “heavily polluted” with Zn and “not polluted” with Cr and Pb.

Keywords

Sediment contamination Geochemical investigation Potentially toxic elements (PTEs) Multivariate statistical analysis Phosphate industry Gafsa–Metaloui mining basin 

Notes

Acknowledgements

The authors are thankful to the anonymous reviewers for their contribution to the improvement of the manuscript. The authors would like to express their profound gratitude to all the members of the International Association of Water Resources in the Southern Mediterranean Basin, Gafsa, Tunisia, for their assistance during the field work and the laboratory staff of the Faculty of Sciences of Gafsa, University of Gafsa, Tunisia. We acknowledge the cooperation of the Company of Phosphate of Gafsa CPG-Tunisia.

References

  1. Achiba WB, Gabteni N, Lakhdar A, Laing GD, Verloo M, Jedidi N (2009) Effects of 5-year application of municipal solid waste compost on the distribution and mobility of trace metal elementsin a Tunisian calcareous soil. Agric Ecosyst Environ 130:156–163.  https://doi.org/10.1016/j.agee.2009.01.001 CrossRefGoogle Scholar
  2. Al-Khashman OA (2004) Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmos Environ 38:6803–6812.  https://doi.org/10.1016/j.atmosenv.2004.09.011 CrossRefGoogle Scholar
  3. Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Bio/Technology 3:71.  https://doi.org/10.1023/B:RESB.0000040059.70899.3d CrossRefGoogle Scholar
  4. Antoniadis V, Robinson JS, Alloway BJ (2008) Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 71(4):759–764.  https://doi.org/10.1016/j.chemosphere.2007.10.015 CrossRefGoogle Scholar
  5. Aris AZ, Praveena SM, Abdullah MH, Radijevic M (2011) Statistical approach and hydrochemical modeling of groundwater system in small tropical island. J Hydro Inf 14:206.  https://doi.org/10.2166/hydro.2011.072 CrossRefGoogle Scholar
  6. ATSDR (Agency for Toxic Substances and Disease Registry) (2008) Draft toxicological profile for cadmium. US Department of Health and Human Services, Atlanta, Georgia. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf.
  7. Avnimelech Y, Ritvo G, Meijer LE, Kochba M (2001) Water content, organic carbon and dry bulk density in flooded sediments. Aquacult Eng 25:25–33.  https://doi.org/10.1016/S0144-8609(01)00068-1 CrossRefGoogle Scholar
  8. Ayari F, Hamdi H, Jedidi N, Gharbi N, Kossai R (2010) Heavy metal distribution in soil and plant in municipal solid waste compost amended plots. IntJ Environ Sci Tech 7:465.  https://doi.org/10.1007/BF03326156 CrossRefGoogle Scholar
  9. Baize D (2000) Guide des analyses en pédologie. 2ème édition revue et augmentée. INRA, Paris. ISBN: 2-7380-0892-5Google Scholar
  10. Ben Salem Z, Ayadi H (2016) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-016-6534-3 CrossRefGoogle Scholar
  11. Bharti PK (2012) Trace metal elements in environment. Lambert Academic Publishing, Germany, p 43Google Scholar
  12. Block G, Matanoski GM, Seltser R, Mitchell T (1988) Cancer morbidity and mortality in phosphate workers. Cancer Res 48:7298–7303Google Scholar
  13. Boruvka L, Vacek O, Jehlicka J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128:289e300.  https://doi.org/10.1016/j.geoderma.2005.04.010 CrossRefGoogle Scholar
  14. Brereton RG, (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, West Sussex. ISBNs: 0-471-48977-8 (HB); 0-471-48978-6 (PB)CrossRefGoogle Scholar
  15. Burollet PF (1956) Contribution à l’étude géologique de la Tunisie centrale. Ann Min Geol Tunis 18:352Google Scholar
  16. Chaabani F (1978) Les phosphorites de la coupe-type de Foum Selja (Métlaoui, Tunisie), une série sédimentaire séquentielle à évaporites du Paléogène. Thèse doct. Spécialité, Univ. Louis Pasteur, Strasbourg, 131pGoogle Scholar
  17. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Hindawi Publishing Corporation Applied and Environmental Soil Science, vol 2014  https://doi.org/10.1155/2014/752708 (Article ID 752708, 12 pages)
  18. Chokri A (2003) Impact des rejets des laveries de phosphates sur la distrubution des métaux lourds à l’interface sol-plantes dans la région de Metlaoui, Diplôme d’Etudes Approffondies en géologie, 96 p département de géologie, faculté des sciences de Tunis-ElManar TunisieGoogle Scholar
  19. Chraiti R, Raddaoui M, Hafiane A (2016) Effluent water quality at phosphate mines in M’dhilla, Tunisia and its potential environmental effects. Mine Water Environ.  https://doi.org/10.1007/s10230-016-0400-x CrossRefGoogle Scholar
  20. CHSR (2009) Human health effects of heavy metals; Center for Hazardous Substance Research. Kansas State University. https://www.engg.ksu.edu/CHSR/outreach/resources/docs/15HumanHealthEffectsofHeavyMetals.pdf
  21. CRDA (2015) Commissariat Régional au Développement Agricole de Gafsa. Rapport annuelGoogle Scholar
  22. Daldoul G, Souissi R, Souissi F, Jemmali N, Chakroun HK (2015) Assessment and mobility of trace metal elementsin carbonated soils contaminated by old mine tailings in North Tunisia. Afr Earth Sci.  https://doi.org/10.1016/j.jafrearsci.2015.06.004 CrossRefGoogle Scholar
  23. Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of trace metal elements in soil. Pol J Environ Stud 10(1):1–10Google Scholar
  24. Galfati I, Bilal E, Béji Sassi A, Abdallah H, Zaïer A (2011) Accumulation of trace metal elements in native plants growing near the phosphate treatment industry, Tunisia. Carpathian J Earth Environ Sci 6(2):85–100 (North University Center of Baia Mare, Romania) Google Scholar
  25. Gargouri D, Azri C, Serbaji MM, Jedoui Y, Montacer M (2010) Heavy metal concentrations in the surface marine sediments of Sfax Coast Tunisia. Environ Monit Assess.  https://doi.org/10.1007/s10661-010-1548-7 CrossRefGoogle Scholar
  26. Ghannem N, Azri C, Serbaji MM, Yaich C (2011) Spatial distribution of trace metal elementsin the coastal zone of “Sfax–Kerkennah” plateau, Tunisia. Environ Progr Sustain Energy 30(2):221–233.  https://doi.org/10.1002/ep.10462 CrossRefGoogle Scholar
  27. Gilmour R (2013) Phosphoric acid: purification, uses, technology, and economics, vol 41. CRC Press, Boca Raton, p 28–41CrossRefGoogle Scholar
  28. Giroux M, Audesse P (2004) Comparison of two methods for the determination of organic carbon total nitrogen and C/N ratio of different organic amendments and manures. Agrosol 15(2):107–110Google Scholar
  29. Glasser CG (1999) Death in the air: air pollution from phosphate fertilizer production. http://www.greens.org/s-r/29/29-18.html
  30. Hamed Y (2009) Caractérisation hydrogéologique, hydrochimique et isotopie des systèmes aquifère du synclinal de Moularès-Tamerza. Thèse doctorat de 3ème cycle. Université de Sfax, pp 280Google Scholar
  31. Hamed Y, Redhaounia B, Ben Sâad A, Hadji R, Zahri F (2017) Groundwater inrush caused by the fault reactivation and the climate impact in the mining Gafsa basin (southwestern Tunisia). J Tethys 5(2):154–164Google Scholar
  32. Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Ben Dhia H (2010) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci 63:1355–1368.  https://doi.org/10.1007/s12665-010-0806-x CrossRefGoogle Scholar
  33. Hamed Y, Ahmadi R, Demdoum A, Bouri S, Gargouri I, Dhia HB, Al-Gamal SA, Laouar R, Choura A (2014) Use of geochemical, isotopic, and age tracer data to develop modelsof groundwater fow: a case study of Gafsa mining basin-Southern Tunisia. J Afr Earth Sci 100:418–436CrossRefGoogle Scholar
  34. Hanif MA, Nadeem R, Rashid U, Zafar MN (2005) Assessing pollution levels in effluents of industries in city zone of Faisalabad, Pakistan. J Appl Sci 5(10):1713–1717CrossRefGoogle Scholar
  35. Holscher B, Frye C, Wichmann H-E, Heinrich J (2002) Exposure to pets and allergies in children. Pediatric Allergy Immunol 13(5):334–341.  https://doi.org/10.1034/j.1399-3038.2002.02063.x CrossRefGoogle Scholar
  36. Hou D, O’Connor D, Nathanail P, Tian L, Ma Y (2017) Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environ Pollut.  https://doi.org/10.1016/j.envpol.2017.07.021 CrossRefGoogle Scholar
  37. Houda B, Dorra G, Chafai A, Emna A, Khaled M (2011) Impact of a mixed “industrial and domestic” wastewater effluent on the southern coastal sediments of Sfax (Tunisia) in the Mediterranean sea. Int J Environ Res 5(3):691–704.  https://doi.org/10.22059/IJER.2011.376 CrossRefGoogle Scholar
  38. IARC ( International Agency for Research on Cancer) (1993) Cadmium and cadmium compounds. IARC Monogr Eval Carcinog Risks Hum 1993(58):119–237Google Scholar
  39. IBGE (Institut Bruxellois pour la Gestion de l'Environnement/Observatoire des Données de l'Environnement) (2002) Les données de l'IBGE: “Interface Santé et Environnement”. http://document.leefmilieu.brussels/opac_css/elecfile/san%2023
  40. Jaishankar M, Mathew BB, Shah MS, Gowda KRS (2014) Biosorption of few heavy metal ions using agricultural wastes. J Environ Pollut Hum Health 2(1):1–6Google Scholar
  41. Kaiser HF (1960) The application of electronic computers to factor analysis. Edu Psychol Meas 20:141–151.  https://doi.org/10.1177/001316446002000116 CrossRefGoogle Scholar
  42. Karaca A (2004) Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 122(2–4):297–303.  https://doi.org/10.1016/j.geoderma.2004.01.016 CrossRefGoogle Scholar
  43. Khelifi F, Redhaounia B, Benassi R, Hamed Y (2017) Impact of the phosphate industry in the Gafsa mining basin: environmental threat and health risks. In: The 1st international symposium of water resources and environmental impact assessment in North Africa. Oral session. WREIANA 2017, 24–26 Mar. Gafsa-TunisiaGoogle Scholar
  44. Klay S, Charef A, Ayed L, Houman B, Rezgui F (2010) Effect of irrigation with treated wastewater on geochemical properties (saltiness, C, N and heavy metals) of isohumic soils (Zaouit Sousse perimeter, Oriental Tunisia). Desalination 253:180–187.  https://doi.org/10.1016/j.desal.2009.10.019 CrossRefGoogle Scholar
  45. Koretsky CM, Haas JR, Ndenga NT, Miller D (2006) Seasonal variations in vertical redox stratification and potential influence on trace metal speciation in minerotrophic peat sediments. Water Air Soil Pollut 173:373.  https://doi.org/10.1007/s11270-006-9089-y CrossRefGoogle Scholar
  46. Kpomblekou K, Tabatabai MA (1994b) Metal content of phosphate rocks. Com Soil Sci Soc Plant Anal 25:2871–2882.  https://doi.org/10.1080/00103629409369231 CrossRefGoogle Scholar
  47. Li XD, Lee SL, Wong SC, Shi WZ, Thorntonc I (2004) The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ. Pollut. 129:113–124CrossRefGoogle Scholar
  48. Li F, Fan Z, Xiao P, Oh K, Ma XP, Hou W (2009) Contamination, chemical speciation and vertical distribution of trace metal elements in soils of an old and large industrial zone in Northeast China. Environ Geol 54:1815–1823.  https://doi.org/10.1007/s00254-008-1469-8 CrossRefGoogle Scholar
  49. Lipfert FW, Perry HM, Miller JP, Baty JD, Wyzga RE, Carmody SE (2000) The Washington University-EPRI veterans’ cohort mortality study: preliminary results. Inhal Toxicol 12:41–73.  https://doi.org/10.1080/713856640 CrossRefGoogle Scholar
  50. Mao LJ, Mo DW, Guo YY, Fu Q, Yang JH, Jia YF (2013) Multivariate analysis of trace metal elements in surface sediments from lower reaches of the Xiang jiang river, southern China. Environ Earth Sci 69:765.  https://doi.org/10.1007/s12665-012-1959-6 CrossRefGoogle Scholar
  51. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654.  https://doi.org/10.1080/10643380701798272 CrossRefGoogle Scholar
  52. McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. In: Nutrient Management Module, Montana State University Extension, Bozeman. http://landresources.montana.edu/nm/documents/NM8.pdf
  53. McDonnell WF, Nishino-Ishikawa N, Petersen FF, Chen LH, Abbey DE (2000) Relationships of mortality with the fine and coarse fraction of long-term ambient PM10 concentrations in nonsmokers. Anal Environ Epidemiol 10:427–436. http://www.scientificintegrityinstitute.org/JEAEE090100.pdf
  54. Mekki A, Sayadi S (2017) Study of heavy metal accumulation and residual toxicity in soil saturated with phosphate processing wastewater. Water Air Soil Pollut 228:215.  https://doi.org/10.1007/s11270-017-3399-0 CrossRefGoogle Scholar
  55. Milukaite A, sakalys J, kvietkus K, vosyliene MZ, Kazlauskiene N, Karlaviciene V (2010) Physicochemical and ecotoxicological characterization of urban storm water runoff. Pol J Environ Stud 19:1279–1285Google Scholar
  56. Mokadem N, Hamed Y, Ben Sâad A, Gargouri I (2013) Atmospheric pollution in North Africa (ecosystems–atmosphere interactions): a case study in the mining basin of El Guettar–M’Dilla (southwestern Tunisia). Arab J Geosci.  https://doi.org/10.1007/s12517-013-0852-2 CrossRefGoogle Scholar
  57. Moldenhauer KM, Zielhofer C, Faust D (2008) Trace metal elements as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia. Quatern Int 189:129–134.  https://doi.org/10.1016/j.quaint.2007.09.006 CrossRefGoogle Scholar
  58. Mortvedt JJ (1987) Cadmium levels in soils and plants from some long-term soil fertility experiments in the United States of America. J Environ Qual 16:137–142.  https://doi.org/10.2134/jeq1987.00472425001600020008x CrossRefGoogle Scholar
  59. Mortvedt JJ, Sikora FJ (1992) Heavy metal, radionuclides, and fluorides in phosphorus fertilizers. In: Sikora FJ (ed) Future directions for agricultural phosphorus research. Muscle Shoals, USA, pp 69–73 (TVA Bulletin Y-224) Google Scholar
  60. Mustapha A, Aris AZ (2012) Multivariate statistical analysis and environmental modeling of heavy metalspollution by industries. Pol J Environ Stud 21(5):1359–1367Google Scholar
  61. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216CrossRefGoogle Scholar
  62. Nagarajan R, Jonathan MP, Roy Priyadarsi D, Wai-Hwa L, Prasanna MV, Sarkar SK, Navarrete-López M (2013) Metal concentrations in sediments from tourist beaches of Miri city, Sarawak, Malaysia (Borneo Island). Mar Pollut Bull 73(1):369–373.  https://doi.org/10.1016/j.marpolbul.2013.05.036 CrossRefGoogle Scholar
  63. Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res 48(6–7):638–647.  https://doi.org/10.1071/SR10049 CrossRefGoogle Scholar
  64. Ozbelge HO, Alfariss TF, Abdulrazik AM (1993) Use of sea water in the flotation of carbonate rich sedimentary phosphate rock. Fertil Res 34(3):217–222.  https://doi.org/10.1007/BF00750567 CrossRefGoogle Scholar
  65. Phillips IR (1999) Copper, lead, cadmium, and zinc sorption by waterlogged and air-dry soil. J Soil Contam 8(3):343–364.  https://doi.org/10.1080/10588339991339379 CrossRefGoogle Scholar
  66. Plumlee GS, Ziegler TL (2003) The medical geochemistry of dusts, soils and other earth materials. In: Lollar BS, Holland HD, Turekian KK (eds) Environmental geochemistry, vol 9. Treatise on geochemistry. Elsevier-Pergamon, Oxford, pp 263–310Google Scholar
  67. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD(2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141.  https://doi.org/10.1001/jama.287.9.1132
  68. Raja M, Dalila T, Ammar BB (2014) Chemical and mineralogy characteristics of dust collected near the phosphate mining basin of Gafsa (South-Western of Tunisia). J Environ Anal Toxicol 4:234.  https://doi.org/10.4172/2161-0525.1000234 CrossRefGoogle Scholar
  69. Rajmohan N, Prathapar SA, Jayaprakash M, Nagarajan R (2014) Vertical distribution of trace metal elementsin soil profile in a seasonally waterlogging agriculture field in Eastern Ganges basin. Environ Monit Assess.  https://doi.org/10.1007/s10661-014-3790-x CrossRefGoogle Scholar
  70. Rakesh Sharma MS, Raju NS (2013) Correlation of heavy metal contamination with soil properties of industrial areas of Mysore, Karnataka, India by cluster analysis. Int Res J Environ Sci 2:22–27. http://www.isca.in/IJENS/Archive/v2/i10/4.ISCA-IRJEvS-2013-166.pdf
  71. Reza R, singh G (2010) Heavy metal contamination and its indexing approach for river water. Int J Environ Sci Technol 7:785. http://www.bioline.org.br/pdf?st10077
  72. Rouis MJ, Bensalah A (1990) Phosphogypsum management in Tunisia: environmental problem and required solutions. In: Proceedings of the third international symposium of phosphogypsum, Orlando. FIPR Pub.n° 01-060-083, vol 1, pp 87–105Google Scholar
  73. Safarova IV, Shaidullina FG, Nikheeva NT, Kadusheva KF (2011) Methods of sample preparation of soil, botton sediments, and soil wastes for atomic absorption determination of heavy metals. Inorg Mater 47:1512–1517.  https://doi.org/10.1134/S0020168511140184 CrossRefGoogle Scholar
  74. Saha PK, Hossain MD (2011) Assessment of heavy metal contamination and sediment quality in the Buriganga River, Bangladesh. In: 2nd international conference on environmental science and technology IPCBEE vol 6. IACSIT Press, SingaporeGoogle Scholar
  75. Sassi S (1974) La sédimentation phosphatée au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Thèse de Doctorat d’Etat en Sciences, Orsay ParisGoogle Scholar
  76. Serbaji MM, Azri C, Medhioub K (2012) Anthropogenic contributionsto heavy metal distributions in the surface and sub-surface sediments of theNorthern Coast of Sfax, Tunisia. Int J Environ Res 6:613–626.  https://doi.org/10.22059/IJER.2012.531 CrossRefGoogle Scholar
  77. Sheykhi V, Moore F (2013) Evaluation of potentially toxic metals pollution in the sediments of the Kor river, southwest Iran. Environ Monit Assess 185:3219.  https://doi.org/10.1007/s10661-012-2785-8 CrossRefGoogle Scholar
  78. Singh M, Müller G, Singh IB (2002) Trace metal elements in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain, India. Water Air Soil Pollut 141(1–4):35–54.  https://doi.org/10.1023/A:102133991 CrossRefGoogle Scholar
  79. Slavkovic L, Skrbic B, Miljevic N, Onjia A (2004) Principal component analysis of trace elements in industrial soils. Environ Chem Lett 2:105–108.  https://doi.org/10.1007/s10311-004-0073-8 CrossRefGoogle Scholar
  80. Smida O (2012) Etude du comportements des rejets de l’industrie phosphatière de bassin de Gafsa,Metlaoui (Redeyef et M’Dhilla) dans les conditions de surface mémoire de mastère, 97 p déparement de géologie, faculté des sciences de Tunis-ElManar TunisieGoogle Scholar
  81. Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311–323.  https://doi.org/10.1016/S0269-7491(99)00048-2 CrossRefGoogle Scholar
  82. Sposito G (1989) The chemistry of soils. Oxford University Press, New York (ISBN: 9780190630881) Google Scholar
  83. Krishnanandan V, Srikantaswamy S (2013) Assessment of impacts by industries on sediments of Kabini river around Nanjangud Industrial area, Karnataka, India. Int J Sci Eng Res 4(11):2229–5518Google Scholar
  84. Sun Y, Zhou Q, Xie X, Liu R (2010) Spatial sources and risk assessment of heavymetal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174:455e462.  https://doi.org/10.1016/j.jhazmat.2009.09.074 CrossRefGoogle Scholar
  85. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265.  https://doi.org/10.1029/95RG00262 CrossRefGoogle Scholar
  86. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851.  https://doi.org/10.1021/ac50043a017 CrossRefGoogle Scholar
  87. Tokalıoglu S, Kartal S (2006) Multivariate analysis of the data and speciation of trace metal elementsin street dust samples from the organized industrial district in Kayseri (Turkey). Atmos Environ 40:2797–2805.  https://doi.org/10.1016/j.atmosenv.2006.01.019 CrossRefGoogle Scholar
  88. Touaylia S, Ghannem S, Toumi H, Bejaoui M, Garrido J (2016) Assessment of trace metal elements status in northern Tunisia using contamination indices: Case of the Ichkeul steams system International Research J Public Environ Health 3(9):209–217. http://www.journalissues.org/IRJPEH/. https://doi.org/10.15739/irjpeh.16.027
  89. UNEP (2012) Plan d’action pour la Méditerranée. Réforme politique concernant la gestion du phosphogypse en Tunisie (Activité 2.1.1). https://docplayer.fr/13527913-Phase-1-evaluation-de-la-situation-actuelle.html
  90. UNEP (United Nations Environment program) (1994) Final report on research project dealing with the effect of pollutants on marine organisms and communities. MAP Tech Rep Ser 80:25–38. http://hdl.handle.net/20.500.11822/469
  91. USGS (1967) Data of Geochemistry. 6th edition. Chapter D. Composition of the earth's crust. Geological survey professional paper 440-D. https://pubs.usgs.gov/pp/0440d/report.pdf
  92. USGS (United States Geological Survey) (1970) Mineral resources in Permian rocks of southwest Montana by Roger W. Swanson. Geological survey professional paper United States government printing office. https://pubs.usgs.gov/pp/0313e/report.pdf
  93. Van Kauwenbergh SJ (1997) Cadmium and other minor elements in world resources of phosphate rock. Proceedings no. 400. The Fertilizer Society, LondonGoogle Scholar
  94. Wang H, Lu S (2011) Spatial distribution, source identification and affecting factors of trace metal elements contamination in urbane suburban soils of Lishui city, China. Environ Earth Sci 64:1921e1929.  https://doi.org/10.1007/s12665-011-1005-0 CrossRefGoogle Scholar
  95. Wang J, Liu G, Lu l, Liu H (2016) Metal distribution and bioavailability in surface sediments from the Huaihe river, Anhui, China. Environ Monit Assess 188:3.  https://doi.org/10.1007/s10661-015-5005-5 CrossRefGoogle Scholar
  96. Wedepohl KH (ed) (1969) Handbook of geochemistry. Springer, BerlinGoogle Scholar
  97. Whitney PR (1975) Relationship of manganese–iron oxides and associated trace metal elements to grain size in stream sediments. J Geochem Explor 4:251–263.  https://doi.org/10.1016/0375-6742(75)90005-9 CrossRefGoogle Scholar
  98. Williams CH, David DJ (1976) The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci 121:86–93.  https://doi.org/10.1097/00010694-197602000-00004 CrossRefGoogle Scholar
  99. Young F, Hammer R (2000) Defining geographic soil bodies by landscape position, soil taxonomy, and cluster analysis. Soil Sci Soc Am J 64:989–998.  https://doi.org/10.2136/sssaj2000.643989x CrossRefGoogle Scholar
  100. Yousaf B, Liu G, Wang R, Zia-ur-Rehman M, Shahid Rizwan M, Imtiaz M, Murtaza G, Shakoor A (2016) Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environ Earth Sci 75:374.  https://doi.org/10.1007/s12665-016-5285-2 CrossRefGoogle Scholar
  101. Zakaria KM, Atta ER, Ibrahim MS (2016) Assessment of the heavy metals and natural radioactivity in phosphate mines and occupational health effects at some Egyptian regions. J Environ Anal Toxicol 6:395.  https://doi.org/10.4172/2161-0525.1000395 CrossRefGoogle Scholar
  102. Zheng SA, Zheng XQ, Chen C (2013) Transformation of metal speciation in purple soil as affected by waterlogging. Int J Environ Sci Technol 10(2):351–358.  https://doi.org/10.1007/s13762-012-0146-3 CrossRefGoogle Scholar
  103. Zhou J, Feng K, Pei Z, Meng F, Sun J (2016) Multivariate analysis combined with GIS to source identification of trace metal elements in soils around an abandoned industrial area, Eastern China. Ecotoxicology 25:380–388.  https://doi.org/10.1007/s10646-015-1596-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth Sciences, Faculty of Sciences of BizerteUniversity of CarthageBizerteTunisia
  2. 2.Research Unity of Geo-Systems, Geo-Resources and Geo-Environments (3G), Faculty of Sciences of GabèsUniversity of GabèsZrigTunisia
  3. 3.International Association of Water Resources in the Southern Mediterranean BasinGafsaTunisia
  4. 4.CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  5. 5.University of Ferhat AbbasSétifAlgeria
  6. 6.Department of Earth Sciences, Faculty of Sciences of GafsaUniversity of GafsaGafsaTunisia

Personalised recommendations