Detecting and monitoring of landslides using persistent scattering synthetic aperture radar interferometry

  • Kourosh ShiraniEmail author
  • Mehrdad Pasandi
Original Article


Persistent scatterer synthetic aperture radar interferometry (PSInSAR) is an applied time series technique to overcome limitations of InSAR (temporal and geometrical decorrelation and atmospheric delay anomalies) for monitoring of ground surface deformations. This method only monitors displacements on pixels with nearly constant temporal backscattering characteristics. In this study, datasets of ascending ALOS PALSAR (L-band) images recorded from 2006 to 2010 and descending ENVISAT ASAR (C-band) images acquisitioned between 2003 and 2010 were processed to detect and monitor the landslide occurred in the Noghol area, Iran. Application of the PSInSAR technique on both PALSAR and ASAR images has significantly improved monitoring of the Noghol landslide. However, the determination of vertical displacement of the landslide by the ASAR images processing is more correct compared to results of the PALSAR processing due to the descending orbital motion of ASAR. The ASAR images also overwhelm PALSAR images for determination of the landslide extent because of detection of more persistent scatterer points. The landslide displacement and aspect obtained by the Global Navigation Satellite System (GNSS) and PSInSAR techniques are in agreement (about 1.2–1.5 m westward in the period of 2003–2010). Particularly, processing results of the ASAR images are more similar to the GNSS measurements. Furthermore, assessment of the landslide type, mechanism and its displacement direction were possible by integration of the PALSAR and ASAR radar images with ascending and descending orbital motions, respectively.


ASAR PALSAR Interferometry Persistent scatterer 



The European Space Agency (ESA) is acknowledged for providing the radar data used in the research. This article is part of the results of a research project entitled “Differential interferometry synthetic aperture radar (DInSAR) and persistent scatterer (PS) Performance assessment on detection and monitoring of landslide” that supported by Isfahan Agricultural and Natural Resources Research and Education Center under code # 0-38-29-94120. Authors also would like to thank Forest, range and watershed organization, Isfahan province for the GNSS data.


  1. Aghanabati A (2006) Geology of Iran. Geology survey of IranGoogle Scholar
  2. Aria consulting engineers (2011) Monitoring of Noghol landslide reportGoogle Scholar
  3. Bardi F, Frodella W, Ciampalini A, Del Ventisette C, Gigli G, Fanti R, Basile G, Moretti S, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: the San Fratello case study. Geomorphology 223:45–60CrossRefGoogle Scholar
  4. Bayer B, Schmidt D, Simoni A (2017) The influence of external digital elevation models on PS-InSAR and SBAS results: implications for the analysis of deformation signals caused by slow moving landslides in the Northern Apennines (Italy). IEEE Trans Geosci Remote Sens 55(5):2618–2631CrossRefGoogle Scholar
  5. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383CrossRefGoogle Scholar
  6. Bhattacharya A. Mukherjee K, Kuri M, Vöge M, Sharma ML, Arora MK, Bhasin RK (2015) Potential of SAR intensity tracking technique to estimate displacement rate in a landslide-prone area in Haridwar region, India. Nat Hazards 79(3):2101–2121CrossRefGoogle Scholar
  7. Bianchini S, Cigna F, Righini G, Proietti C, Casagli N (2012) Landslide HotSpot mapping by means of persistent scatterer interferometry. Environ Earth Sci 67:1155–1172. CrossRefGoogle Scholar
  8. Bianchini S, Ciampalini A, Raspini F, Bardi F, Di Traglia F, Moretti S, Casagli N (2015) Multi-temporal evaluation of landslide movements and impacts on buildings in San Fratello (Italy) by means of C-band and X-band PSI data. Pure Appl Geophys 172(11):3043–3065CrossRefGoogle Scholar
  9. Blanco-Sanchez P, Mallorqui JJ, Duque S, Monells D (2008) The coherent pixels technique (CPT): an advanced DInSAR technique for nonlinear deformation monitoring. Pure Appl Geophys 165(6):1167–1193CrossRefGoogle Scholar
  10. Bouali EH, Oommen T, Escobar-Wolf R (2018) Mapping of slow landslides on the Palos. Verdes Peninsula using the California Landslide Inventory and persistent scatterer interferometry. Landslides 15(3):439–452CrossRefGoogle Scholar
  11. Bovenga F, Wasowski J, Nitti DO, Nutricato R, Chiaradia MT (2012) Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens Environ 119:272–285CrossRefGoogle Scholar
  12. Bovenga F, Nitti DO, Fornaro G, Radicioni F, Stoppini A, Brigante R (2013) Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis. Int J Remote Sens 34(11):4083–4104. CrossRefGoogle Scholar
  13. Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full resolution DInSAR map generation for slow-moving landslide analysis at differential scales. Eng Geol 112(1–4):29–42. CrossRefGoogle Scholar
  14. Casu F, Manconi A, Pepe A, Lanari R (2011) Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude pixel-offset SBAS technique. IEEE Trans Geosci Remote 49(7):2752–2763CrossRefGoogle Scholar
  15. Catalao J, Nico G, Hanssen R, Catita C (2011) Merging GNSS and atmospherically corrected InSAR data to map 3-D terrain displacement velocity. IEEE Trans Geosci Remote Sens 49:2354–2360CrossRefGoogle Scholar
  16. Chaabane F, Tupin F, Maitre H (2005) An empirical model for interferometric coherence. In: Proceedings of SPIE—the international society for optical engineering 5980, art. no. 59800E.
  17. Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A Opt Image Sci Vis 18(2):338–351CrossRefGoogle Scholar
  18. Cigna F, Osmanoglu B, Cabral-Cano E, Dixon TH, Avila-Olivera JA, Garduno-Monroy VH, Demets C, Wdowinski S (2012) Monitoring land subsidence and its induced geological hazard with synthetic aperture radar interferometry: a case study in Morelia, Mexico. Remote Sens Environ 117:146–161CrossRefGoogle Scholar
  19. Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283CrossRefGoogle Scholar
  20. Colesanti C, Wasowsky J (2006) Investigating landslides with spaceborne Synthetic Aperture Radar (SAR) interferometry. Eng Geol 88(3–4):173–199. CrossRefGoogle Scholar
  21. Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng Geol 68(1–2):3–14CrossRefGoogle Scholar
  22. Comerci V, Vittori E, Cipolloni C, Di Manna P, Guerrieri L, Nisio S, Succhiarelli C, Ciuffreda M, Bertoletti E (2015) Geohazards monitoring in Roma from InSAR and in situ data: outcomes of the PanGeo project. Pure Appl Geophys 172(11):2997–3028. CrossRefGoogle Scholar
  23. Costantini M, Falco S, Malvarosa F, Minati F (2008) A new method for identification and analysis of persistent scatterers in series of SAR images. In: Proceedings of IEEE international geoscience and remote sensing symposium (IGARSS’08), Boston, MA, USA, 6–11, pp 449–452Google Scholar
  24. Crosetto M, Biescas E, Duro J, Closa J, Arnaud A (2008) Generation of advanced ERS and Envisat interferometric SAR products using the stable point network technique. Photogramm Eng Remote Sens 74(4):443–450CrossRefGoogle Scholar
  25. Crosetto M, Monserrat O, Cuevas M, Crippa B (2011) Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sens 3:305–318CrossRefGoogle Scholar
  26. Crosetto M, Monserrat O, Devanthéry N, Cuevas-González M, Barra A, Crippa B (2016) Persistent scatterer interferometry using sentinel-1 data. The international archives of the photogrammetry, remote sensing and spatial information sciences, volume XLI-B7, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech RepublicGoogle Scholar
  27. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, special report 247-Transportation Research Board, National Research Council. National Academy Press, Washington, DC, pp 36–75Google Scholar
  28. Darvishzadeh A (2001) Geology of Iran. Amirkabir Publications, TehranGoogle Scholar
  29. Ding XL, Li ZW, Zhu JJ, Feng GC, Long JP (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensor 8:5426–5448CrossRefGoogle Scholar
  30. Dong J, Liao M, Xu Q, Zhang L, Tang M, Gong J (2018a) Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: a case study of Danba County in the Dadu River Basin. Eng Geol 240(5):95–109CrossRefGoogle Scholar
  31. Dong J, Zhang L, Tang M, Liao M, Xu Q, Gong J, Ao M (2018b) Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China. Remote Sens Environ 205:180–198CrossRefGoogle Scholar
  32. Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88(3–4):200–217CrossRefGoogle Scholar
  33. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212CrossRefGoogle Scholar
  34. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20CrossRefGoogle Scholar
  35. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470CrossRefGoogle Scholar
  36. Fiaschi S, Mantovani M, Frigerio S, Pasuto A, Floris M (2017) Testing the potential of Sentinel-1A TOPS interferometry for the detection and monitoring of landslides at local scale (Veneto Region, Italy). Environ Earth Sci 76:492CrossRefGoogle Scholar
  37. Galve JP, Cevasco A, Brandolini P, Soldati M (2015) Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 12(1):101–114CrossRefGoogle Scholar
  38. García-Davalillo J, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11:225–246. CrossRefGoogle Scholar
  39. Gernhardt S. Adam N. Eineder M, Bamler R (2010) Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Ann GIS 16(2):103–111CrossRefGoogle Scholar
  40. Greif V, Vlcko J (2011) Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ Earth Sci 66:1585–1595. CrossRefGoogle Scholar
  41. Harger RO (1970) Synthetic Aperture Radar Systems: theory and design. Academic Press, New YorkGoogle Scholar
  42. Hastaoglu KO (2016) Comparing the results of PSInSAR and GNSS on slow motion landslides, Koyulhisar Turkey. Geomat Nat Hazards Risk 7(2):786–803CrossRefGoogle Scholar
  43. Herrera G, Notti D, Garcia-Davalillo JC, Mora O, Cooksley G, Sanchez M, Arnaud A, Crosetto M (2011) Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 8(2):195–206CrossRefGoogle Scholar
  44. Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43CrossRefGoogle Scholar
  45. Hooper A (2006) Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation, Ph.D. Thesis, Stanford University, StanfordGoogle Scholar
  46. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:96–106CrossRefGoogle Scholar
  47. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):1–5CrossRefGoogle Scholar
  48. Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J Geophys Res: Solid Earth 112(B7):1978–2012CrossRefGoogle Scholar
  49. Hooper A, Bekaert D, Spaans K, Arikan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13CrossRefGoogle Scholar
  50. Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2014) Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth Sci Rev 133:1–17. CrossRefGoogle Scholar
  51. Iglesias R, Mallorqui J, Monells D, López-Martínez C, Fabregas X, Aguasca A, Gili J, Corominas J (2015) PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images. Remote Sens 7(1):530–563CrossRefGoogle Scholar
  52. Jordan H, Francesca Cigna F, Bateson L (2017) Identifying natural and anthropogenically-induced geohazards from satellite ground motion and geospatial data: Stoke-on-Trent, UK. Int J Appl Earth Obs Geoinf 63:90–103CrossRefGoogle Scholar
  53. Kampes BM (2006) Radar interferometry, persistent scatterer technique. Springer, BerlinGoogle Scholar
  54. Kiseleva Е, Mikhailov V, Smolyaninova E, Dmitriev P, Golubev V, Timoshkina E, Hooper A, Samiei-Esfahany S, Hanssen R (2014) PS-InSAR monitoring of landslide activity in the Black Sea coast of the Caucasus. Procedia Technol 16:404–413CrossRefGoogle Scholar
  55. Komac M, Holly R, Mahapatra P, Van der Marel H, Bavec M (2015) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 12:241–257CrossRefGoogle Scholar
  56. Lanari R, Mora O, Manunta M, Mallorqui JJ, Berardino P, Sansosti E (2004) A small baseline approach for investigating deformation on full resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens 42(7):1377–1386CrossRefGoogle Scholar
  57. Liu P, Li Z, Hoeya T, Kincal C, Zhang J, Zeng Q, Muller JP (2013) Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int J Appl Earth Obs Geoinf 21:253–264CrossRefGoogle Scholar
  58. Lu P. Catani F. Tofani V, Casagli N (2014) Quantitative hazard and risk assessment for slow-moving landslides from persistent scatterer interferometry. Landslides 11(4):685–966CrossRefGoogle Scholar
  59. Manconi A, Casu F, Ardizzone F, Bonano M, Cardinali M, De Luca C, Gueguen E, Marchesini I, Parise M, Vennari C, Lanari R, Guzzeti F (2014) Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Nat Hazard Earth Syst Sci 14:1835–1841. CrossRefGoogle Scholar
  60. Mantovani F, Soeters R, Van Westen C (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15(3–4):213–225CrossRefGoogle Scholar
  61. Michel R, Avouac JP (1999) Measuring ground displacement from SAR amplitude images: application to the Landers earthquake. Geophys Res Lett 26(7):875–878. CrossRefGoogle Scholar
  62. Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41(10):2243–2253CrossRefGoogle Scholar
  63. Necsoiu M, McGinnis RN, Hooper DM (2014) New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques. Landslides 11(6):1141–1153CrossRefGoogle Scholar
  64. Nishiguchi T, Tsuchiya S, Imaizumi F (2017) Detection and accuracy of landslide movement by InSAR analysis using PALSAR-2 data. Landslides 14(4):1483–1490. CrossRefGoogle Scholar
  65. Notti D, Davalillo JC, Herrera G, Mora O (2010) Assessment of the performance of Xband satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875. CrossRefGoogle Scholar
  66. Perissin D, Wang T (2012) Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans Geosci Remote Sens 50(1):271–280CrossRefGoogle Scholar
  67. Peyret M, Djamour Y, Rizza M, Ritz J-F, Hurtrez J-E, Goudarzi MA, Nankali H, Ch_ery J, Le Dortz K, Uri F (2008) Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GNSS and SAR interferometry. Eng Geol 100:131–141CrossRefGoogle Scholar
  68. Piacentini D, Devoto S, Mantovani M, Pasuto A, Prampolini M, Soldati M (2015) Landslide susceptibility modeling assisted by persistent scatterers interferometry (PSI): an example from the northwestern coast of Malta. Nat Hazards 78(1):681–697CrossRefGoogle Scholar
  69. Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using persistent scatterer interferometry (PSI). Int J Remote Sens 33(7):2068–2096CrossRefGoogle Scholar
  70. Romy S, Doubre C, Malet JP, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330CrossRefGoogle Scholar
  71. Samsonov S (2010) Topographic correction for ALOS PALSAR interferometry. IEEE Trans Geosci Remote Sens 48(7):3020–3027CrossRefGoogle Scholar
  72. Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6(10):9600–9652CrossRefGoogle Scholar
  73. Sedaghat ME, Shaverdi T (1975) Geological map of Yasuj, scale 1:100,000. Series sheet 6351, Geological Survey of IranGoogle Scholar
  74. Shirani K (2004) Evaluation of the most important landslide hazard zonation for a selection of suitable method in Semirom, South of Isfahan, Ministry of Jihad-e-AgricultureGoogle Scholar
  75. Singhroy V (2005) Remote sensing for landslide assessment: chap. 16. In: Glade T, Anderson MG, Crozier MJ (eds) Book on landslides hazard and risk. Wiley, New York, pp 469–492Google Scholar
  76. Singleton A, Li Z, Hoey T, Muller JP (2014) Evaluation sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens Environ 147:133–144. CrossRefGoogle Scholar
  77. Sousa JJ, Ruiz A, Hassen R, Bastos L, Gill A, Galindo-Zaldivar J, Galdeano C (2010) PS-InSAR processing methodologies in the detection of field surface deformation—study of the Granada basin (Central Betic Cordilleras, southern Spain). J Geodyn 49:181–189CrossRefGoogle Scholar
  78. Sousa JJ, Hooper A, Hanssen R, Bastos L, Ruiz A (2011) Persistent scatterer InSAR: a comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens Environ 115:2652–2663CrossRefGoogle Scholar
  79. Strozzi T, Luckman A, Murray T, Wegmüller U, Werner CL (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans Geosci Remote Sens 40(11):2384–2391CrossRefGoogle Scholar
  80. Strozzi T, Wegmuller U, Keusen HR, Graf K, Wiesmann A (2006) Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Trans Geosci Remote Sens 3(1):15–18CrossRefGoogle Scholar
  81. Tantianuparp P, Shi X, Zhang L, Balz T, Liao M (2013) Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens 5(6):2704–2719CrossRefGoogle Scholar
  82. Tessari G, Floris M, Pasquali P (2017) Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps. Environ Earth Sci 76:85. CrossRefGoogle Scholar
  83. Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013) Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13:299–309CrossRefGoogle Scholar
  84. Tomas R, Herrera G, Lopez-Sanchez JM, Vicente F, Cuenca A, Mallorqu JJ (2010) Study of the land subsidence in Orihuela City (SE Spain) using PSI data: distribution, evolution and correlation with conditioning and triggering factors. Eng Geol 115(1–2):105–121CrossRefGoogle Scholar
  85. Tosi L, Da Lio C, Strozzi T, Teatini P (2016) Combining L- and X-band SAR interferometry to assess ground displacements in heterogeneous coastal environments: the Po River Delta and Venice Lagoon, Italy. Remote Sens 8:308. CrossRefGoogle Scholar
  86. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizer RJ (eds) Special robert 176: landslides analysis and control TRB. National Research Council, Washington, DC, pp 11–33Google Scholar
  87. Varnes DJ (1984) The IAEG commission on landslides and other mass-movements 1984. Landslide hazard zonation: a review of principles and practice. The UNESCO Press, ParisGoogle Scholar
  88. Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138. CrossRefGoogle Scholar
  89. Wasowski J, Bovenga F, Nitti DO, Nutricato R (2012) Investigating landslides with persistent scatterers interferometry (PSI): current issues and challenges. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Proceedings of the 11th international and 2nd North American symposium on landslides, Banff (Canada), 3–8 June, 2012. Landslides and Engineered Slopes 2. CRC Press/Balkema, Leiden, pp 1295–1301Google Scholar
  90. Watershed deputy of natural resources survey (2011) Monitoring landslide reportGoogle Scholar
  91. Xie M, Huang J, Wang L, Huang J, Wang Z (2016) Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir. Environ Earth Sci 75:717. CrossRefGoogle Scholar
  92. Xue Y, Meng X, Wasowski J, Chen G, Li K, Guo P, Bovenga F, Zeng R (2016) Spatial analysis of surface deformation distribution detected by persistent scatterer interferometry in Lanzhou Region, China. Environ Earth Sci 75:80. CrossRefGoogle Scholar
  93. Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslide 7(3):359–365. CrossRefGoogle Scholar
  94. Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102(B4):7547–7563CrossRefGoogle Scholar
  95. Zhao C, Lu Z, Zhang Q, Fuente J (2012) Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens Environ 124:348–359CrossRefGoogle Scholar
  96. Zhou Z(2013) The applications of InSAR time series analysis for monitoring long-term surface change in peatlands. Ph.D. Thesis, University of GlasgowGoogle Scholar
  97. Zhu W, Zhang Q, Ding X, Zhao C, Yang C, Qu F, Qu W (2014) Landslide monitoring by combining of CR-InSAR and GNSS techniques. Adv Space Res 53:430–439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Soil Conservation and Watershed Management Research Department, Isfahan Agricultural and Natural Resources Research and Education CenterAREEOIsfahanIran
  2. 2.Department of Geology, Faculty of ScienceUniversity of IsfahanIsfahanIran

Personalised recommendations