Advertisement

Prediction and mapping of erodibility factors (USLE and WEPP) by magnetic susceptibility in basalt-derived soils in northeastern São Paulo state, Brazil

  • Ronny Sobreira BarbosaEmail author
  • José Marques Júnior
  • Vidal Barrón
  • Marcílio Vieira Martins Filho
  • Diego Silva Siqueira
  • Rafael Gonçalves Peluco
  • Lívia Arantes Camargo
  • Laércio Santos Silva
Original Article
  • 188 Downloads

Abstract

Spatial assessment of soil erosion is essential for the adaptation of agricultural practices and monitoring of soil losses. In this sense, this study aims to assess the efficiency of magnetic susceptibility (MS) as a predictor of soil erodibility factors (K for USLE model; Ki and Kr for WEPP model) fora detailed mapping of Oxisols with different iron contents in northeastern São Paulo State, Brazil. This study was carried out in an area of 380 hectares under sugarcane cultivation in São Paulo State. Soil samples were collected in a sampling grid (150) and in a transect (86) and physical and chemical analyses and calculations of the erodibility factors/parameters K, Ki, and Kr were performed. Pedotransfer functions (PTFs) were calibrated using simple linear regression analysis to predict the factors/parameters K and Ki using MS as a predictor variable. The observed values of MS and the predicted values of the factors/parameters K, Ki, and Kr were submitted to geostatistical analysis for constructing maps. Magnetic susceptibility can be used as a predictor of erodibility factors (K for USLE model; Ki and Kr for WEPP model) for Oxisols with total iron content ranging from 1 to 20% Fe2O3, with a precision of up to 60% and an accuracy of up to 85%. The results can guide future studies on water erosion in a tropical environment using magnetic soil data as an environmental covariate in the modeling process for large areas.

Keywords

Pedometrics Iron oxides Kaolinite Gibbsite Soil and water conservation Spatial variability 

Notes

Acknowledgements

To the Coordination for the Improvement of Higher Education Personnel (Capes) for granting the doctoral scholarship with a collaborative period abroad (Process No. 18732-12-7). To the São Paulo Research Foundation (FAPESP) for the financial support by means of the BIOEN program (Process No. 13/25118-4).

References

  1. Abu-Hamdeh NH, Ismail SM, Al-Solaimani SG, Hatamleh RI (2018) Runoff and erosion as affected by tillage system and polyacrylamide in two sandy loam soils differing in silt and clay contents in semi-arid regions. Soil Environ 37:11–20.  https://doi.org/10.25252/SE/18/51390 CrossRefGoogle Scholar
  2. Alekseeva TV, Sokolowska Z, Hajnos M, Alekseev AO, Kalinin PI (2009) Water stability of aggregates in subtropical and tropical soils (Georgia and China) and its relationships with the mineralogy and chemical properties. Eurasian Soil Sci 42:415–425.  https://doi.org/10.1134/S1064229309040085 CrossRefGoogle Scholar
  3. Alleoni LRF, Camargo AO (1995) Óxidos de ferro e de alumínio e a mineralogia da fração argila deferrificada de Latossolos Ácricos. Sci Agric 52:416–421.  https://doi.org/10.1590/S0103-90161995000300002 CrossRefGoogle Scholar
  4. Aragão R, Santana GR, da Costa CEFF, Cruz MAS, Figueiredo EE, Srinivasan VS (2013) Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. Rev Bras Eng Agríc Ambient 17:243–252.  https://doi.org/10.1590/S1415-43662013000300001 CrossRefGoogle Scholar
  5. Barrios MR, Marques JRJ, Panosso AR, Siqueira DS, Scala JRNL (2012) Magnetic susceptibility to identify land scape segments on a detailed scale in the region of Jaboticabal, São Paulo, Brazil. R Bras Ci Solo 36:1073–1082.  https://doi.org/10.1590/S0100-06832012000400002 CrossRefGoogle Scholar
  6. Bartington. Operation manual for MS2 magnetic susceptibility system. http://www.bartington.com/Literaturepdf/Operation%20Manuals/om0408%20MS2.pdf. Accessed 24 Jan 2013
  7. Bastos RS, Sá Mendonça E, Alvarez V, Corrêa VH (2005) M.M. Formação e estabilização de agregados do solo decorrentes da adição de compostos orgânicos com diferentes características hidrofóbicas. R Bras Ci Solo 29:11–20CrossRefGoogle Scholar
  8. Bellezoni RA, Iwai CK, Elis VR, Paganini WS, Hamada J (2014) Small-scale landfills: impacts on groundwater and soil. Environ Earth Sci 71:2429–2439.  https://doi.org/10.1007/s12665-013-2643-1 CrossRefGoogle Scholar
  9. Bezerra AS, Cantalice JRB (2006) Erosão entre sulcos em diferentes condições de cobertura do solo sob cultivo de cana-de-açúcar. R Bras Ci Solo 30:565–573.  https://doi.org/10.1590/S0100-06832006000300016 CrossRefGoogle Scholar
  10. Boschi RS, Bocca FF, Lopes-Assad MLRC, Assad ED (2018) How accurate are pedotransfer functions for bulk density for Brazilian soils? Sci Agr 75:70–78.  https://doi.org/10.1590/1678-992X-2016-0357 CrossRefGoogle Scholar
  11. Budiman M, McBratney AB, Mendonça-Santos ML, Santos HG (2003) Revisão sobre funções de pedotransferência (PTFs) e novos métodos de predição de classes e atributos do Solo. Embrapa Solos, Rio de JaneiroGoogle Scholar
  12. Camargo OA, Moniz AC, Jorge JA, Valadares JMAS (1986) Métodos de análise química, mineralógica e física de solos do IAC. InstitutoAgronomico de Campinas, CampinasGoogle Scholar
  13. Camargo LA, Marques J, Pereira GT, Alleoni LRF, Bahia ASRS, Teixeira DDB (2016) Pedotransfer functions to assess adsorbed phosphate using iron oxide content and magnetic susceptibility in an Oxisol. Soil Use Manag 32(2):172–182.  https://doi.org/10.1111/sum.12255 CrossRefGoogle Scholar
  14. Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in Central Iowa Soils. Soil Sci Soc Am J 58:1501–1511.  https://doi.org/10.2136/sssaj1994.03615995005800050033x CrossRefGoogle Scholar
  15. Cerquetani GE, Martins Filho MV (2006) Rotina computacional e equação simplificada para modelar transporte de sedimentos num Latossolo Vermelho Distrófico. Eng Agríc 26:617–626.  https://doi.org/10.1590/S0100-69162006000200032 CrossRefGoogle Scholar
  16. Correa MM, Ker JC, Barrón V, Fontes MPF, Torret J, Curi N (2008) Caracterização de óxidos de ferro de solos do ambiente tabuleiros costeiro. R Bras Ci Solo 32:1017–1031.  https://doi.org/10.1590/S0100-06832008000300011 CrossRefGoogle Scholar
  17. Corrêa JC, Bull LT, Crusciol CAC, Moraes MH (2009) Alteração de atributos físicos em latossolo com aplicação superficial de escória de aciaria, lama cal, lodos de esgoto e calcário. R Bras Ci Solo 33:263–272.  https://doi.org/10.1590/S0100-06832009000200004 CrossRefGoogle Scholar
  18. Cortez LA, Marques J Jr, Peluco RG, Teixeira DB, Siqueira DS (2011) Suscetibilidade magnética para identificação de áreas de manejo específico em citricultura. Energ Agric 26:60–79Google Scholar
  19. Costa ACS, Bigham JM, Rhoton FE, Traina SJ (1999) Quantification and characterization of maghemite in soils derived from volcanic rocks in southern Brazil. Clays Clay Miner 4:466–473.  https://doi.org/10.1346/CCMN.1999.0470408 CrossRefGoogle Scholar
  20. Cprm-Companhia de Pesquisa de Recursos Minerais (2012) Serviço Geológico do Brasil. Geobank: mapa geológico do Estado de São Paulo—escala 1:750.000. http://geobank.sa.cprm.gov.br/pls/publico/Projetos.Projeto.Cadastro?p_cod_. Accessed 1 Oct 2012
  21. Dearing JA (1994) Environmental magnetic susceptibility. Using the Bartington MS2 system. British Library, EnglandGoogle Scholar
  22. Denardin JE (1990) Erodibilidade do solo estimado por meio de parâmetros físicos e químicos. Thesis. Escola Superior de Agricultura Luis de Queiroz, Universidade de São PauloGoogle Scholar
  23. Donagema GK, Campos DVB de, Calderano SB, Teixeira WG, Viana JHM (2011a) Manual de métodos de análise de solos. Embrapa Solos, Rio de JaneiroGoogle Scholar
  24. Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011b) Manual de métodos de análise de solo. Embrapa Solos, Rio de JaneiroGoogle Scholar
  25. Ferreira MM, Fernandes B, Curi N (1999) Mineralogia da fração argila e estrutura de Latossolos da região sudeste do Brasil. R Bras Ci Solo 23:507–514.  https://doi.org/10.1590/S0100-06831999000300003 CrossRefGoogle Scholar
  26. Ferreira PF, Azevedo AC, Dalmolim RSD, Girelli D (2007) Carbono orgânico, óxidos de ferro e distribuição de agregados em dois solos derivados de basalto no Rio Grande do Sul—Brasil. Ci Rural 37:381–388.  https://doi.org/10.1590/S0103-84782007000200013 CrossRefGoogle Scholar
  27. Flanagan DC, Livingston SJ (1995) Water erosion prediction project: WEEP user summary. National Soil Research Laboratory & USDA, Washington, D.C, West LafayetteGoogle Scholar
  28. Franco-Otero VG, Soler-Rovira P, Hernandez D, Lopez-de-Sa EG, Plaza C (2012) Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biol Fertil Soils 48:205–216.  https://doi.org/10.1007/s00374-011-0620-y CrossRefGoogle Scholar
  29. Górka-Kostrubiec B, Teisseyre-Jeleńska M, Dytłow SK (2016) Magnetic properties as indicators of Chernozem soil development. Catena 138:91–102.  https://doi.org/10.1016/j.catena.2015.11.014 CrossRefGoogle Scholar
  30. Jaksik O, Kodesova R, Kapicka A, Klement A, Fer M, Nikodem A (2016) Using magnetic susceptibility mapping for assessing soil degradation due to water erosion. Soil Water Res 11:105–113.  https://doi.org/10.17221/233/2015-SWR CrossRefGoogle Scholar
  31. Jordanova D, Jordanova N, Atanasova A, Tsacheva T, Petrov P (2011) Soil tillage erosion estimated by using magnetism of soils—a case study from Bulgaria. Environ Monit Assess 183:381–394.  https://doi.org/10.1007/s10661-011-1927-8 CrossRefGoogle Scholar
  32. Jordanova D, Jordanova N, Petrov P (2014) Pattern of cumulative soil erosion and redistribution pinpointed through magnetic signature of Chernozem soils. Catena 120:46–56.  https://doi.org/10.1016/j.catena.2014.03.020 CrossRefGoogle Scholar
  33. Kämpf N, Curi N (2000) Óxidos de ferro: Indicadores de ambientes pedogênicos. In: Novais RF, Alvarez VVH, Schaefer CEGR (eds) Tópicos em ciência do solo, v.1. Sociedade Brasileira de Ciência do Solo, Viçosa-MG, pp 107–138Google Scholar
  34. Kanu MO, Meludu OC, Oniku SA (2014) Comparative study of top soil magnetic susceptibility variation based on some human activities. Geofísica Int 53:411–423.  https://doi.org/10.1016/S0016-7169(14)70075-3 CrossRefGoogle Scholar
  35. Lal R (1988) Erodibility and erosivity. In: Lal R (ed) Soil erosion research methods. Soil and Water Conservation Society, Washington, pp 141–160Google Scholar
  36. Lal R, Stewart BA (1992) Need for land restoration. In: Lal R, Stewart BA (eds) Soil restoration. Springer, New York, pp 1–11CrossRefGoogle Scholar
  37. Lane LJ, Nearing MA (1989) Water erosion prediction project: hillslope profile model documentation. National Soil Research Laboratory & USDA, Washington, D.C, West LafayetteGoogle Scholar
  38. Lima PMP, Andrade H (2001) Erodibilidade entressulcos e atributos de solos com B textural e B latossólico do sul de Minas Gerais. R Bras Ci Solo 25:463–474.  https://doi.org/10.1590/S0100-06832001000200022 CrossRefGoogle Scholar
  39. Lima JM, Curi N, Resende M, Santana DP (1990) Dispersão do material de solo em água para avaliação indireta da erodibilidade em latossolos. R Bras Ci Solo 14:85–90Google Scholar
  40. Marques Júnior J, Siqueira DS, Camargo LA, Teixeira DDB, Barrón V, Torrent J (2014) Magnetic susceptibility and diffuse reflectance spectroscopy to characterize the spatial variability of soil properties in a Brazilian Haplustalf. Geoderma 219–220:63–71.  https://doi.org/10.1016/j.geoderma.2013.12.007 CrossRefGoogle Scholar
  41. Martins Filho MV (1999) Modelagem do processo de erosão entressulcos em latossolos de Jaboticabal-SP. Thesis, Universidade Federal de Lavaras, LavrasGoogle Scholar
  42. Martins Filho MV, Engler MPC, Izidorio R, Contrin FB, Serra EA, Amaral NS, Souza ZM (2004) Modelos para estimativa do subfator cobertura-manejo (CiII) relativo à erosão entressulcos. Eng Agríc 24:603–611.  https://doi.org/10.1590/S0100-69162004000300012 CrossRefGoogle Scholar
  43. Martins Filho MV, Liccioti TT, Pereira GT, Marques Júnior J, Sanchez RB (2009) Soil and nutrients losses of an alfisol with sugarcane crop residue. Eng Agríc 29:8–18.  https://doi.org/10.1590/S0100-69162009000100002 CrossRefGoogle Scholar
  44. Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clay by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner 7:317–327.  https://doi.org/10.1016/B978-0-08-009235-5.50026-7 CrossRefGoogle Scholar
  45. Mohamed KJ, Andrade A, Rey D, Rubio B, Bernabeu AM (2017) A kinetic model to explain the grain size and organic matter content dependence of magnetic susceptibility in transitional marine environments: a case study in Ria de Muros (NW Iberia). Geochem Geophys 18:2200–2215.  https://doi.org/10.1002/2017GC006823 CrossRefGoogle Scholar
  46. Montanari R, Marques Júnior J, Campos MCC, Souza ZM, Camargo LA (2010) Caracterização mineralógica de Latossolos em diferentes feições do relevo na região de Jaboticabal, SP. Rev Cienc Agron 41:191–199.  https://doi.org/10.1590/S1806-66902010000200004 CrossRefGoogle Scholar
  47. Montanari R, Zambianco EC, Corrêa AR, Pellin DMP, Carvalho MP, Dalchiavon FC (2012) Atributos físicos de um Latossolo Vermelho correlacionados linear e espacialmente com a consorciação de guandu com milheto. R Ceres 59:125–135.  https://doi.org/10.1590/S0034-737X2012000100018 CrossRefGoogle Scholar
  48. Norrish K, Taylor RM (1961) The isomorphous replacement of iron by aluminium in soil goethites. J Soil Sci 12:294–306.  https://doi.org/10.1111/j.1365-2389.1961.tb00919.x CrossRefGoogle Scholar
  49. Nunes MCM, Cassol EA (2008) Estimativa da erodibilidade em entressulcos de Latossolos do Rio Grande do Sul. R Bras Ci Solo 32:2839–2845.  https://doi.org/10.1590/S0100-06832008000700030 CrossRefGoogle Scholar
  50. Nyawade S, Karanja N, Gachene C, Parker M, Schulte-Geldermann E (2018) Susceptibility of soil organic matter fractions to soil erosion under potato-legume intercropping systems in central Kenya. J Soil Water Conserv 73:567–576.  https://doi.org/10.2489/jswc.73.5.567 CrossRefGoogle Scholar
  51. Olson KR, Gennadiyev AN, Zhidkin AP, Markelov M, Golosov VN, Lang JM (2013) Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena 104:103–110.  https://doi.org/10.1016/j.catena.2012.10.015 CrossRefGoogle Scholar
  52. Peluco RG, Marques Júnior J, Siqueira DS, Pereira GT, Barbosa RS, Teixiera DB, Adame CR, Cortez LA (2013) Suscetibilidade magnética do solo e estimação da capacidade de suporte à aplicação de vinhaça. Pesq Agropec Bras 48:661–672.  https://doi.org/10.1590/S0100-204X2013000600012 CrossRefGoogle Scholar
  53. Raij B van, Quaggio JA, Cantarella H (1987) Análise química do solo para fins de fertilidade. Fundação Cargill, São PauloGoogle Scholar
  54. Robertson GP (2004) GS+: Geostatistics for the environmental sciences—GS + User’s Guide. Gamma Desing Software, Plainwell, 152 pGoogle Scholar
  55. Römkens MJM, Roth CB, Nelson DW (1977) Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Sci Soc Am J 41:954–960.  https://doi.org/10.2136/sssaj1977.03615995004100050030x CrossRefGoogle Scholar
  56. Salvati L, Bajocoo S, Ceccarelli T, Perini L (2013) Amplifying (or reversing) the territorial disparities in land vulnerability to soil degradation: The Case of Italy. Prof Geogr 65:647–663.  https://doi.org/10.1080/00330124.2012.724351 CrossRefGoogle Scholar
  57. Santos HL, Marques J Jr, Matias SSR, Siqueira DS, Martins Filho MV (2013) Erosion factors and magnetic susceptibility in different compartments of a slope in Gilbués-PI, Brazil. Eng Agríc 33:64–74.  https://doi.org/10.1590/S0100-69162013000100008 CrossRefGoogle Scholar
  58. Santos TEM, Montenegro AAA, Silva Junior VP (2008) Erosão hídrica e perda de carbono orgânico em diferentes tipos de cobertura do solo no semiárido, em condições de chuva simulada. Rev Bras Recur Hidr 13:113–125.  https://doi.org/10.21168/rbrh.v13n2.p113-125 CrossRefGoogle Scholar
  59. Santos AC, Pereira MG, Anjos LHC, Bernini TA, Cooper M, Nummer AR, Francelino MR (2010) Gênese e classificação de solos numa topossequência no ambiente de mar de morros do médio Vale do Paraíba do Sul, RJ. R Bras Ci Solo 34:1297–1314.  https://doi.org/10.1590/S0100-06832010000400027 CrossRefGoogle Scholar
  60. Schwertmann U (1973) Use of oxalate for Fe extraction from soils. Can J Soil Sci 53:244–246.  https://doi.org/10.4141/cjss73-037 CrossRefGoogle Scholar
  61. Schwertmann U, Kämpf N (1985) Properties of goethite and hematite in kaolinitic soils of Southern and Central Brazil. Soil Sci 139:344–350.  https://doi.org/10.1097/00010694-198504000-00008 CrossRefGoogle Scholar
  62. Silva GRV, Souza ZM, Martins Filho MV, Barbosa RS, Sousa GS (2012) Soil, water and nutrient losses by interrill erosion from green cane cultivation. R Bras Ci Solo 36:963–970.  https://doi.org/10.1590/S0100-06832012000300026 CrossRefGoogle Scholar
  63. Siqueira DS, Marques J Jr, Matias SSR, Barrón V, Torrent J, Baffa O, Oliveira LC (2010) Correlation of properties of Brazilian Haplustalfs from magnetic susceptibility measurements. Soil Use Manage 26:425–431.  https://doi.org/10.1111/j.1475-2743.2010.00294.x CrossRefGoogle Scholar
  64. Siqueira DS, Marques Júnior J, Pereira GT, Barbosa RS, Teixeira DB, Peluco RG (2014) Sampling density and proportion for the characterization of the variability of Oxisol attributes on different materials. Geoderma 232:172–182.  https://doi.org/10.1016/j.geoderma.2014.04.037 CrossRefGoogle Scholar
  65. Siqueira DS, Marques Júnior J, Teixeira DDB, Matias SSR, Camargo LA, Pereira GT (2016) Magnetic susceptibility for characterizing areas with different potentials for sugarcane production. Pesquisa Agropecuária Brasileira 51(9):1349–1358.  https://doi.org/10.1590/s0100-204x2016000900034 CrossRefGoogle Scholar
  66. Soil Survey Staff (2014) Keys to soil taxonomy. USDA-Natural Resources Conservation Service, Washington DCGoogle Scholar
  67. Souza CK, Marques Júnior J, Martins Filho MV, Pereira GT (2003) Influência do relevo e erosão na variabilidade espacial de um Latossolo em Jaboticabal (SP). R Bras Ci Solo 27:1067–1074.  https://doi.org/10.1590/S0100-06832003000600011 CrossRefGoogle Scholar
  68. Souza ZM, Barbieri DM, Marques J Jr, Pereira GT, Campos MCC (2007) Influência da variabilidade espacial de atributos químicos de um Latossolo na aplicação de insumos para cultura de cana-de-açúcar. Ciênc Agrotec 31:371–377CrossRefGoogle Scholar
  69. Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  70. Tomazoni JC, Guimarães E (2005) A sistematização dos fatores da EUPS em SIG para quantificação da erosão laminar na bacia do Rio Jirau. Rev Bras Cartogr 57:235–244Google Scholar
  71. Torrent J, Barrón V, Liu QS (2006) Magnetic enhancement is linked to and precedes hematite formation in aerobicsoil. Geophys Res Letters 33:1–4.  https://doi.org/10.1029/2005GL024818 CrossRefGoogle Scholar
  72. Torrent J, Liu QS, Bloemendal J, Barrón V (2007) Magnetic enhancement and iron oxides in the upper luochuan Loess-paleosol sequence, Chinese Loess plateau. Soil Sci Soc Am J 71:1570–1578.  https://doi.org/10.2136/sssaj2006.0328 CrossRefGoogle Scholar
  73. Torrent J, Liu QS, Barrón V (2010) Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma 154:465–472.  https://doi.org/10.1016/j.geoderma.2008.06.020 CrossRefGoogle Scholar
  74. Uehara G (1988) Acric properties and their significance to soil classification. In: International Soil Classification Workshop, Embrapa/Snlcs, Rio de Janeiro pp 19–22Google Scholar
  75. Veiga M, Cabeda MSV, Reichert JM (1993) Erodibilidade em entressulcos de solos do Rio Grande do Sul. R Bras Ci Solo 17:121–128Google Scholar
  76. Vieira SR (2000) Geoestatística em estudos de variabilidade espacial do solo. In: Novais RF, Alvarez VVH, Schaefer GR (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa-MG, pp 1–54Google Scholar
  77. Vieira SR, Millete J, Topp GC, Reynolds WD (2002) Handbook for geostatistical analysis of variability in soil and climate data. In: Alvarez V, Schaefer VH, Barros CEGR, Mello NF, Costa JWV LM, (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa-MG, pp 1–45Google Scholar
  78. Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA 111:5266–5270.  https://doi.org/10.1073/pnas.1320054111 CrossRefGoogle Scholar
  79. Wang H, Huo Y, Zeng L, Wu X, Cai Y (2008) A 42-yr soil erosion record inferred from mineral magnetism of reservoir sediments in a small carbonate-rock catchment, Guizhou Plateau, southwest China. J Paleolimnol 40:897–921.  https://doi.org/10.1007/s10933-008-9206-6 CrossRefGoogle Scholar
  80. Wang B, Xia DS, Yu Y, Jia J, Xu SJ (2013) Magnetic properties of river sediments and their relationship with heavy metals and organic matter in the urban area in Lanzhou, China. Environ Earth Sci 70:605–614.  https://doi.org/10.1007/s12665-012-2144-7 CrossRefGoogle Scholar
  81. Wang YX, Ran LS, Fang NF, Shi ZH (2018) Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau. Catena 167:257–265.  https://doi.org/10.1016/j.catena.2018.05.005 CrossRefGoogle Scholar
  82. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses; a guide to conservation planning. USDA-Science and Education Administration, Hyattsville, MarylandGoogle Scholar
  83. Wischmeier WH, Johnson CB, Cross BV (1971) Soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ronny Sobreira Barbosa
    • 1
    Email author
  • José Marques Júnior
    • 2
  • Vidal Barrón
    • 3
  • Marcílio Vieira Martins Filho
    • 2
  • Diego Silva Siqueira
    • 2
  • Rafael Gonçalves Peluco
    • 2
  • Lívia Arantes Camargo
    • 2
  • Laércio Santos Silva
    • 2
  1. 1.Curso de Bacharelado em Engenharia AgronômicaUniversidade Federal do PiauíBom JesusBrazil
  2. 2.Faculdade de Ciências Agrárias e VeterináriasUniversidade Estadual PaulistaJaboticabalBrazil
  3. 3.Universidad de CórdobaCórdobaSpain

Personalised recommendations