Advertisement

Seasonal characteristics of the chemical composition of rainwaters from Salta city, NW Argentina

  • María Romero OruéEmail author
  • Diego Gaiero
  • Alicia Kirschbaum
Thematic Issue
  • 31 Downloads
Part of the following topical collections:
  1. IV RAGSU -- Advances in Geochemistry of the Surface in Argentina

Abstract

Major ions, pH and electrical conductivity (EC) were analyzed in rainwater samples collected at Salta city (NW Argentina) during the summer seasons of years 2010–2011 and 2011–2012. Precipitations in the area are characterized by low total dissolved load and slightly acidic pH. The pH values are in agreement with low concentrations of anthropogenic acid species such as NO3 and SO42− and consistent with a low urban development. Data indicate that the high concentrations of dissolved Ca are probably associated with the existence of marble quarry mining in the valley. According to a below-cloud process, it is observed that during the dry season, dust particles and contaminants are concentrated in the lower troposphere and washed-out immediately after a rainfall occurred. This process is in part responsible for the chemical composition of the local rainwater. Apart from quarry mining activity, the area does not have significant extra atmospheric pollution linked to anthropogenic sources. The new data permit to establish the baseline of the chemical composition of the local rainwater.

Keywords

Particle scavenging Below-cloud process Atmospheric pollution Lerma valley 

Notes

Acknowledgements

This work was financially supported by Antorchas, IAI, the Weizmann Institute, SECyT/UNC, FON-CyT (PICT-0625 and 0525). We are indebted to the Servicio Meteorologico Nacional for the meteorological data provided.

References

  1. ADEFA (1995–2012) Anuarios Asociación de Fábricas de Automotores web page: http://www.adefa.org.ar/es/estadisticas-anuarios. Accessed 22 Aug 2017
  2. Al-Momani IF (2003) Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS, acidity and possible sources. Atmos Environ 37:4507–4515CrossRefGoogle Scholar
  3. Al-Momani IF, Ataman OY, Anwari MA, Tuncel S, Köse C, Tuncel G (1995) Chemical composition of precipitation near an industrial area at Izmir, Turkey. Atmos Environ 29(10):1131–1143CrossRefGoogle Scholar
  4. Ayres GP, Gillett RW, Selleck PW, Bentley ST (1995) Rainwater composition and acid deposition in the vicinity of the fossil fuel-fired power plants in southern Australia. Water Air Soil Pollut 85:2313–2318CrossRefGoogle Scholar
  5. Báez A, Belmont R (1987) Comparative study of the chemical composition of rain of three different zones in Mexico. Rev Int Contam Ambient 3:25–36Google Scholar
  6. Báez A, Belmont R, García R, Padilla H, Torres MC (2007) Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico. Atmos Res 86:61–75CrossRefGoogle Scholar
  7. Baudino G (1996) Hidrogeología del valle de Lerma, Provincia de Salta, Argentina. Tesis Doctoral Facultad de Ciencias Naturales, Universidad Nacional de SaltaGoogle Scholar
  8. Bianchi AR, Yáñez CE, Acuña LR (2005) Base de datos mensuales de precipitaciones del Noroeste Argentino. Secretaría de Agricultura, Ganadería y Pesca de la Nación, Instituto Nacional de Tecnología Agripecuaria (INTA), centro regional Salta-Jujuy. http://www.ora.gov.ar/informes/atlas_noa_precipitaciones.pdf. Accessed 30 Oct 2017
  9. Boucher O (2015) Atmospheric aerosols: properties and climate impacts. Springer, NetherlandsGoogle Scholar
  10. Castillo ML (2011) Estudios geológico, minero y ambiental de las explotaciones de calizas de los Cerros de San Miguel, La Merced, Salta. Tesis profesional Facultad de Ciencias Naturales, Universidad Nacional de SaltaGoogle Scholar
  11. De Mello WZ (2001) Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environ Pollut 114(2):235–242CrossRefGoogle Scholar
  12. Gaiero DM (1998) Hidrogeoquímica de un Sistema de la Región Semiárida: el Río Suquía, Córdoba, Argentina, I Fuentes de Solutos. Rev Asoc Geol Arg 53(2):16–186Google Scholar
  13. Galloway JN, Keene WC (1996) Processes controlling the composition of precipitation at a remote southern hemispheric location: Torres del Paine National Park, Chile. J Geophys Res 101(D3):6883–6897CrossRefGoogle Scholar
  14. Galloway JN, Likens GE (1978) The collection of precipitation for chemical analysis. Tellus 30:71–82CrossRefGoogle Scholar
  15. Galloway JN, Linkens GE, Keene WC, Miller JM (1982) The composition of precipitation in remote areas of the world. J Geophys Res 87(11):8771–8786CrossRefGoogle Scholar
  16. Galloway JN, Linkens GE, Hawley ME (1984) Acid precipitation: natural versus anthropogenic components. Science 226:829–831CrossRefGoogle Scholar
  17. García MG, Lecomte KL, Pasquini AI, Fórmica SM, Depetris PJ (2007) Sources of disslved REE in Mountainous streams draining granitic rocks, Sierras Pampeanas (Córdoba, Argentina). Geochim Cosmochim Acta 71:5355–5368CrossRefGoogle Scholar
  18. García Martínez R (2007) Determinación de metales pesados en la precipitación pluvial de una zona urbana (Ciudad de México) y de una zona rural (Rancho Viejo, Edo. de México). Tesis doctoral Universidad Nacional Autónoma de MéxicoGoogle Scholar
  19. Garreaud RD, Aceituno P (2001) Chap. 2: Atmospheric circulation over South America: mean features and variability. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, London, pp 45–59Google Scholar
  20. Herrera-Murrillo J, Rodríguez-Román S (2009) Determinación de la concentración de aniones en muestras de precipitación total colectadas en San José, Costa Rica: primera parte. Rev Int Contam Ambient 25(2):65–72Google Scholar
  21. Kaya G, Tuncel G (1997) Trace element and major ion composition of wet and dry deposition in Ankara, Turkey. Atmos Environ 31(23):3985–3998CrossRefGoogle Scholar
  22. Lara LL, Antaxo P, Martinelli LA, Camargo PB, Victoria RL, Ferraz ESB (2005) Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil. Atmos Environ 39:4627–4637CrossRefGoogle Scholar
  23. Loÿe-Pilot MD, Martin JM, Davis TD (1986) Influence of Saharan dust on the rain acidity and atmospheric input on the Mediterranean. Nature 321:427–428CrossRefGoogle Scholar
  24. Luca SJ, Milano LB, Ide CN (1991) Rain and urban stormwater quality. Water Sci Technol 23:133–140CrossRefGoogle Scholar
  25. Mazzeo NA, Vilar CT (2000) Emisiones a la atmósfera de Buenos Aires (Argentina) de monóxido de carbono, dióxido de nitrógeno, hidrocarburos y material particulado originados por el transporte automotor de pasajeros. Memorias Congressos Brasileros de Meteorología (Río de Janeiro) http://www.cbmet.com/ Accessed 24 Aug 2017
  26. Migliavacca D, Teixeira EC, Wiegand F, Machado ACM, Sánchez J (2005) Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil. Atmos Environ 39(10):1829–1844CrossRefGoogle Scholar
  27. Musso HE (2013) El uso de perceptrones multicapa para la modelización estadística de series de tiempo no lineales de SO2, en Salta Capital, Argentina. Rev Mate Teor Aplic 20(1):61–78Google Scholar
  28. Musso HE, Boemo A, Lomniczi I, Sandoval M (1997) Monitoreo de la concentración de óxidos de nitrógeno en la atmósfera de la Ciudad de Salta. Memorias del IV Congreso Interamericano sobre el Medio Ambiente. 1:128–132. (Caracas-Venezuela)Google Scholar
  29. Pant P, Harrison RM (2013) Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ 77:78–97CrossRefGoogle Scholar
  30. Romero Orué M, Gaiero D, Paris M, Fórmica S, Murray J, De la Hoz M, López E, Kirschbaum A (2017) Precipitaciones húmedas en el norte de Argentina: caracterización química de los componentes solubles en el Valle de Lerma. Salta Andean Geol 44(1):59–78CrossRefGoogle Scholar
  31. Salve PR, Maury A, Wate SR, Devotta S (2008) Chemical composition of major ions in rainwater. Bull Environ Contam Toxicol 80(3):242–246CrossRefGoogle Scholar
  32. Sánchez L, Morales J, Velásquez H, Portillo D, Cano Y, Montilla B, Iriarte N, Mesa J (2009) Composición iónica y niveles de acidez de las lluvias de Maracaibo, Venezuela entre 1989 y 2001. Rev Int Contam Ambient 25(3):169–179Google Scholar
  33. Saulo AC, Nicolini M, Chou SC (2000) Model characterization of the South American low-level flow during the 1997–1998 spring-summer season. Clim Dyn 16:867–881CrossRefGoogle Scholar
  34. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New JerseyGoogle Scholar
  35. Sequeira R (1982) Acid rain: a assessment based on acid-base consideration. J Air Pollut Control Assoc 32(3):241–245CrossRefGoogle Scholar
  36. Servicio Meteorológico N (2010–2012) Catálogo de datos abiertos del SMN web page: https://www.smn.gob.ar/descarga-de-datos. Accessed 1 Oct 2017
  37. Winkler EM (1976) Natural dust and acid rain. Water Air Soil Pollut 6:295–302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • María Romero Orué
    • 1
    Email author
  • Diego Gaiero
    • 2
  • Alicia Kirschbaum
    • 1
  1. 1.Instituto de Bio y Geociencias del NOAConsejo Nacional De Investigaciones Científicas Y Técnicas (IBIGEO, CONICET)SaltaArgentina
  2. 2.Facultad de Ciencias Exactas Físicas y Naturales, Centro de Investigaciones en Ciencias de la TierraConsejo Nacional de Investigaciones Científicas y Técnicas (UNC, CICTERRA/CONICET)CórdobaArgentina

Personalised recommendations