Advertisement

Application of the GALDIT method combined with geostatistics at the Bouteldja aquifer (Algeria)

  • Dahbia Djoudar Hallal
  • Mohamed El Amine Khelfi
  • Sadek Zahouani
  • Ahcene Benamghar
  • Ouissam Haddad
  • Abdelhadi Ammari
  • Joao Paulo Lobo-Ferreira
Thematic Issue
  • 32 Downloads
Part of the following topical collections:
  1. Groundwater resources in a changing environment

Abstract

This paper aims to spatially characterize the marine intrusion in the case of the Bouteldja main aquifer using the GALDIT method coupled with a geostatistical approach. The latter was used to compensate the weakness of GALDIT method for not considering the spatial variability of the studied variables. Using a field data set of the Bouteldja aquifer, the semi-variograms of four continuous important variables (hydraulic conductivity A, groundwater level L, thickness T and sea water intrusion I) were studied and modeled. The obtained structures were mainly composed of spherical models with a small nugget effect, except the I variable which has shown a perfectly continuous Gaussian model with zero nugget effect, arguing that the marine intrusion is seriously present and continuous. These individual results were also mapped by kriging and the intrusion easily shown on the field. However, the GALDIT computation and mapping did not confirm the found intrusion. It has merely shown a medium to low vulnerability in narrow and parallel bands close to the shore area. This work has shown that the GALDIT method used solely, without a geostatistical approach, would lead to a misinterpretation of the vulnerability of a main aquifer to saline intrusion.

Keywords

GALDIT Shore aquifer Bouteldja Vulnerability Sea water intrusion Pollution Salinity 

Notes

Acknowledgements

We would like to thank Professor Abdelkrim Khaldi of the Laboratory of Rheology, Transport and Treatment of Complex Fluids (Department of Hydraulics, USTO-MB, Oran) for his valuable advice. Also thanks are due to the director of the National Agency of Hydraulic Resources (ANRH) of Annaba.

References

  1. Affoun S (2006) Water resources, mobilization and use in the Mafragh watershed. Thesis, Earth Sciences, Geography and City and Town planning Faculty. University Mentouri of Constantine Algeria, p 166Google Scholar
  2. Agarwadkar Y (2005) Salinity mapping in coastal area using GIS and remote sensing. Thesis IIRS, IndiaGoogle Scholar
  3. Aichouri I (2016) Modelization of the marine intrusion in the coastal aquifer of Annaba. Contribution of salinométriques analysis. Doctorate thesis, Earth Sciences Faculty, Geology Department, University Badji Mokhtar, AnnabaGoogle Scholar
  4. Assassi F, Hani A, Djabri L (2004) Evolution chimique et vulnérabilité à la pollution de l’aquifère dunaire de Bouteldja (Nord Est Algérien); Sciences & Technologie BN° 21, Juin 2004, pp 89–95Google Scholar
  5. Attoui B, Kherici N, Bousnoubra H (2012) State of vulnerability to pollution of the big reservoirs of the ground water in the region of Annaba–Bouteldja (NE Algeria). Geogr Tech 2:1–13Google Scholar
  6. Baillargeon S (2005) Le krigeage : revue de la théorie et application à l’interpolation spatiale de données de précipitations. Mémoire présenté à la Faculté des études supérieures de l’Université Laval Québec dans le cadre du programme de maîtrise en statistique pour l’obtention du grade de Maître ès sciences (M.Sc.) Faculté des sciences et de génie. Faculté des sciences et de génie Université LAVAL, QuebecGoogle Scholar
  7. Batchi M, Karkouri A, El Maaqili M, Fenijiro I (2014) Cartographie de la vulnérabilité à l’intrusion marine de l’aquifère Côtier de Mnasra (littoral du Gharb, Maroc – Nord-Occidental). Mar Sci Coast Res J 11Google Scholar
  8. Benamghar A (2002) Etude statistique et géostatistique multivariée de l’Inventaire géochimique des ressources métallifères de la Wallonie. Application à l’estimation et à l’interprétation des cartes de risque de pollution en métaux lourds. Thèse de doctorat. Université catholique de Louvain, BelgiqueGoogle Scholar
  9. Boulabeiz M, Klebingat S, Houha B, Bousnoubra H (2018) GIS-based GALDIT method for vulnerability assessment to seawater intrusion of the Quaternary coastal Collo aquifer (NE-Algeria). Arab J Geosci.  https://doi.org/10.1007/s12517-018-3400-2 CrossRefGoogle Scholar
  10. Bounab S, Bousnoubra H, Saou A (2017) Hydrogeochemical typology of groundwater in t he North-eastern of Algeria (Annaba-El Tarf). Rev Sci Technol Synth 35:166–177Google Scholar
  11. Bourbia H (2011) Feasibility in the establishment of a feeding basin of an aquifer. Case of the sand ridge of Bouteldja. (Extreme North Eastern Region of Algeria), Mémoire de Magistère, University of AnnabaGoogle Scholar
  12. Chachadi, AG, Lobo-Ferreira JP (2001) Cartographie de la vulnérabilité des aquifères dans l'intrusion d'eau de mer à l'aide de la méthode GALDIT. Actes de l'atelier sur la modélisation en hydrogéologie, Université Anna, Chennai, pp 143–156Google Scholar
  13. Chachadi AG, Lobo-Ferreira JP (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: part 2—GALDIT Indicator Descriptions. In: IAHS and LNEC, proceedings of the 4th the fourth inter celtic colloquium on hydrology and management of water resources, held at Universidade do Minho, Guimarães, Portugal, July 11–13, 2005Google Scholar
  14. Chilès JP (2004) La modélisation géostatistique de la variabilité spatiale et ses applications. Sciences de la Terre, Université Pierre et Marie Curie, Paris VIGoogle Scholar
  15. Djabri L, Hani A, Mania J, Mudry J, Pulido-Bosch (2003) Algeria, a country in a development way, does it have already developed dirty beveled edge. Tecnologia de la intrusion de agua de mar en acuiferos costeros: paises mediterraeos. IGME, Madrid, p 129. ISBN:84-7840-470-8Google Scholar
  16. Djoudar D (2014) Methodological approach of the vulnérability of the underground water resource in a strongly urban area: example in Algeria of the coastal plains (Mitidja). Doctorate Es-Sciences thesis, FSTGAT, USTHB, AlgerGoogle Scholar
  17. Dörfliger N (2011) Rise of the marine water level, induced by the climate changes, a consequence on the marine intrusion in the coastal aquifers in the home country. BRMG/RP-60829-Fr. Rapport finalGoogle Scholar
  18. Energoprojekt-Enhyd (1992) Etude de l’Aménagement Hydro-Agricoles de la plaine d’El Tarf. Analyse des ressources en eaux. Hydrologie, dossier I-C, II-C, volume déf. I-C-1Google Scholar
  19. Geovariances (2007) Isatis 7.0, case studies, 2007, p 507Google Scholar
  20. Gleizes G, Bouloton J, Bossière G, Collomb P (1988) Données lithologiques et pétro-structurales nouvelles sur le massif cristallophyllien de l’Edough (Est-Algérien). C R Acad Sci Paris 306(Série II):1001–1008Google Scholar
  21. Guezgouz N, Djabri L, Bouhsina S (2013) Etude comparative de la vulnérabilité à l’intrusion marine par la méthode paramétrique: cas de la région de Annaba – Guerbes. In: Séminaire International sur la géologie et l′Environnement, 05–07 Novembre 2013, Ouargla AlgérieGoogle Scholar
  22. Haddad O (2017) Etude de la vulnérabilité d’une nappe d’eau souterraine basée sur l’approche méthodologique GALDIT, (Cas de la nappe de BOUTELDJA, Nord EST Algérien), Master en hydraulique, ENSH, Blida Algerie, p 88Google Scholar
  23. Haied N, Chaab S, Saaidia B, Bougherira N (2015) Impact of water recharge on the ground water quality of the Bouteldja unconfined dune aquifer. Rev Sci Technol Synth 30:48–57Google Scholar
  24. Haïed N (2015) Quantitative evaluation of a re-feeding of the free aquifer of the Bouteldja sand ridge in the Bordj Ali Bey region and its impact on the quality on the underground water. Doctorate thesis, University of AnnabaGoogle Scholar
  25. Hani A, Djabri L, Lallahem S, Mania J (2003) Identification of the underground water flow in the aquifers of the Tindouf basin and the Annaba–Bouteldja plains. In: Hydrology of the Mediterranean and Semi-arid Regions. Proceedings of an international symposium held in Montpellier, April, IAHS publ no. 278Google Scholar
  26. Hilly J (1962) Etude géologique du massif de l’Edough et du Cap de Fer (Est constantinois). Bulletin no. 19, Carte géologique Algérie, AlgerGoogle Scholar
  27. Joleaud L (1936) Etude géologique de la region de Bône et de la Calle. Bulletin Service Carte Géologie de l’Algérie 2e série, 12Google Scholar
  28. Kardan Moghaddam H, Jafari F, Javadi S (2017) Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrol Sci J 62(1):137–146Google Scholar
  29. Kherici N (1985) Aquifère sableux de bords de mer, hydrodynamique et hydrochimie. Exemple de la nappes de Bouteldja (Nord-Est Algérien). Kherci N. Thèse de Doctorat 3eme cycle. USTL, MontpellierGoogle Scholar
  30. Kherici N, Bousnoubra H, Derradji EF, Rouabhia AK, Fehdi C (2010) Un nouveau graphique pour la détermination de la vulnérabilité et du risque de pollution des eaux souterraines. Geographia Technica (1):1–24Google Scholar
  31. Lobo-Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to sea-water intrusion using GALDIT method: part 1—application to the Portuguese Aquifer of Monte Gordo. In: IAHS and LNEC, proceedings of the 4th the fourth inter celtic colloquium on hydrology and management of water resources, held at Universidade do Minho, Guimarães, Portugal, July 11–13, 2005Google Scholar
  32. Michaud Y, Lefebvre R, et Martel R (2003) Vulnérabilité: introduction et méthodologie. Rapport technique du Centre Géoscientifique de QuebecGoogle Scholar
  33. Najib S (2014) Study on the evolution of the Chaouia coast (Azemmour-Bir Jdid, Maroc). Climatology, Hydrochemistry and Electrical Tomography, Hydrology. Thesis, University Chouaïb Doukkali, Morocco, p 288Google Scholar
  34. QGIS (version utilisée 2.18.24). https://www.qgis.org/fr/site/about/index.html. Accessed Dec 2018
  35. Ramdani A (1996) Hydrogéologie et mobilisation de la nappe dunaire de Bouteldja. Ramdani A., Magistère, Université d’Annaba, AlgérieGoogle Scholar
  36. Sadoune A (2012) Vulnerability and evaluation of water resources in the extreme North-East of Algeria. Earth Sciences Faculty, Geology Department, University of Badji Mokhtar, AnnabaGoogle Scholar
  37. Saidi S (2011) Contribution des approches paramétriques, cartographiques et statistiques à l’étude de la vulnérabilité du système aquifère phréatique de Mahdia (Tunisie orientale). Thèse de doctorat, Faculté des sciences de Sfax, département des sciences de la terre (Tunisie)Google Scholar
  38. Sebaïti AB (2010) Optimized management of water resources of a coastal aquifer (case of the Annaba aquifer (North-East of Algeria)). Lille University Sciences and Technologies, Villeneuve d’AscqGoogle Scholar
  39. Tasnim Z, Tahsin S (2016) Application of the method of GALDIT for groundwater vulnerability assessment: a case of South Florida. Asian J Appl Sci Eng 5:27–40Google Scholar
  40. Toubal AC (1998) Contribution of the geophysics to the study of the hydrodynamic problems and the underground marine intrusion. Exemple of the Annaba plains, of the Mitidja and Algiers Bay. Doctorate thesis, IST/USTHB. Bab EzzouarGoogle Scholar
  41. Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Thèse de Doctorat es sciences, Univ. Pierre et Marie-Curie, Paris, pp 282–296Google Scholar
  42. World Health Organization (2004) http://www.who.int/whr/2004/en/ (report 04). Accessed Dec 2018
  43. Zaarour T (2017) Application of GALDIT index in the Mediterranean region to assess vulnerability to sea water intrusion. GEM thesis, series no. 21, Department of Physical Geography and Ecosystem Sciences, Lund UniversityGoogle Scholar
  44. Lahondère JC (1987) Les séries ultra telliennes d’Algérie Nord Orientale et les formations Environnantes dans leur cadre structurale. Thèse de doctorat d’Etat. Univ. Paul Sabatier, FranceGoogle Scholar
  45. Hammor D (1992) Du Panafricain au Miocène : 600 millions d’années d’évolution polycyclique dans le massif de l’Edough (Algérie Nord Orientale). Retracés par la pétrologie, la tectonique et la géochronologie. (U/Pb, Rb/Sr, Sm/Nd et 39Ar/40Ar). Thèse de l’UST Languedoc, Univ. de Montpellier IIGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Génie de l’Eau et de l’EnvironnementEcole Nationale Supérieure de l’Hydraulique (High National School of Hydraulic)BlidaAlgeria
  2. 2.Laboratoire de Travaux Publics, Ingénierie, Transport et EnvironnementEcole Nationale des Travaux Publics (ENSTP)AlgiersAlgeria
  3. 3.Laboratório Nacional de Engenharia Civil (LNEC)LisbonPortugal

Personalised recommendations