Advertisement

Assessment of chitin variation in seston of a temperate estuary (Bahía Blanca, Argentina)

  • Florencia BiancalanaEmail author
  • Melisa D. Fernandez-Severini
  • Diana M. Villagran
  • Anabela A. Berasategui
  • Matías N. Tartara
  • Carla V. Spetter
  • Valeria Guinder
  • Jorge E. Marcovecchio
  • Rubén J. Lara
Original Article

Abstract

Chitin was quantified in seston samples to determine its seasonal and spatial distribution in the estuary of Bahia Blanca. Sampling was conducted at three sites: Puerto Cuatreros, Maldonado, and Canal Vieja in autumn, winter, spring, and summer (2012–2013). Chitin concentrations were 3.79 ± 0.75 and 0.61 ± 0.36 chitin mg L−1 in autumn and winter, respectively. The proportion of chitin in the suspended particular matter (SPM) reached a maximum of 4% in autumn. There were statistical differences in chitin between seasons but not between sampling points. The particulate organic carbon (POC) ranged from 337.25 ± 30.52 µM in winter to 54.93 ± 26.10 µM in summer. The SPM varied from a maximum of 1172.17 ± 17.53 mg L−1 in spring to a minimum 71.42 ± 5.59 mg L−1 in autumn. In both cases, statistical differences were found between seasons but not between sampling points. The results indicated that the concentration of chitin as well as SPM and POC had a strong seasonal trend. The principal component analysis and the canonical analysis on the principal coordinates of environmental variables also highlighted the seasonal variation. The micro-detritus and planktonic organisms (fungi, diatoms, and copepods) in SPM and POC represent a chitinaceous substrate with a great importance for the study of the incorporation of compounds of nitrogen and carbon to the Bahía Blanca system.

Keywords

Chitin Biopolymer Seston Seasonal changes Biogeochemical cycles Estuary 

Notes

Acknowledgements

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 467 2011-2014 and PICT 910 2011-2013). We are grateful to IADO boat staff Enio Redondo and Alberto Conte for their technical support and help during sampling.

References

  1. Alldredge AL, Gotschalk CC (1990) The relative contribution of marine snow of different origins to biological processes in coastal waters. Cont Shelf Res 10:41–58CrossRefGoogle Scholar
  2. Allen AK, Neuberger A, Sharon N (1973) The purification, composition and specificity of Wheat-GermAgglutinin. Biochem J 131:155–162CrossRefGoogle Scholar
  3. APHA-AWWA-WEF (1998) Standard methods for the examination of water and waste water. American Public Health Association, Washington, D.CGoogle Scholar
  4. Arias AH, Vazquez-Botello A, Tombesi N, Ponce-Vélez G, Freije RH, Marcovecchio JE (2010) Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca Estuary, Argentina. Environ Monit Assess 160:301–314CrossRefGoogle Scholar
  5. Barria de Cao MS Barría de Cao MS (1992) (1992) Abundance and species composition of Tintinnina (Ciliophora) in Bahía Blanca estuary, Argentina. Estuar Coast Shelf S 34:295–303CrossRefGoogle Scholar
  6. Beier S, Bertilsson S (2013) Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol.  https://doi.org/10.3389/fmicb.2013.00149 CrossRefGoogle Scholar
  7. Berasategui AA, Hoffmeyer MS, Biancalana F, Fernandez-Severini MD, Menéndez MC (2009) Temporal variation in abundance and fecundity of the invading copepod Eurytemora americana in Bahía Blanca Estuary during an unusual year. Estuar Coastl Shelf S 85:82–88CrossRefGoogle Scholar
  8. Berasategui AA, Hoffmeyer MS, Dutto MS, Biancalana F (2012) Seasonal variation in the egg morphology of the copepod Eurytemora americana and its relationship with reproductive strategy in a temperate estuary in Argentina. ICES J Mar Sci 69(3):380–388CrossRefGoogle Scholar
  9. Biancalana F, Menéndez MC, Berasategui AA, Fernández-Severini MD, Hoffmeyer MS (2012) Sewage pollution effects on mesozooplankton structure in a shallow temperate estuary. Environ Monit Assess 184(6):3901–3391CrossRefGoogle Scholar
  10. Biancalana F, Kopprio G, Dutto MS, Berasategui AA, Fricke A, Garzón-Cardona JE, Peterke D, Lara R (2017a) Chitin determination on marine seston in a shallow temperate estuary (Argentina). Braz J Oceanogr 65(2):146–154CrossRefGoogle Scholar
  11. Biancalana F, Kopprio GA, Lara RJ, Alonso C (2017b) A protocol for a simultaneous identification of chitin-containing particles and their associated bacteria. Syst Appl Microbiol 40(5):314–320CrossRefGoogle Scholar
  12. Curds CR (1982) The Ecology and Role of Protozoa in Aerobic Sewage Treatment. Ann Rev Microbiol 36:27–28CrossRefGoogle Scholar
  13. Diodato SL, Hoffmeyer MS (2008) Contribution of planktonic and detritic fractions to the natural diet of mesozooplankton in Bahía Blanca Estuary. Hydrobiologia 614(1):83–90CrossRefGoogle Scholar
  14. Durkin CA, Mock T, Armbrust EV (2009) Chitin in Diatoms and Its Association with the Cell Wall. Eukaryot Cell 8(7):1038–1050CrossRefGoogle Scholar
  15. Dutto MS, López-Abbate MC, Biancalana F, Berasategui AA, Hoffmeyer MS (2012) The impact of sewage on environmental quality and the mesozooplankton community in a highly eutrophic estuary in Argentina. ICES J Mar Sci 69(3):399–409CrossRefGoogle Scholar
  16. Dutto MS, Kopprio GA, Hoffmeyer MS, Alonso TS, Graeve M, Kattner G (2014) Planktonic trophic interactions in a human-impacted estuary of Argentina: a fatty acid marker approach. J Plankton Res 36:776–787CrossRefGoogle Scholar
  17. Eberlein K, Kattner G (1987) Automatic method for determination of orthophosphate and total dissolved phosphorus in the marine environment. Fresenius’ Zeitschrift fur Analytische Chemie 326(4):354–357CrossRefGoogle Scholar
  18. Federici GA, Cuadrado DG, Gómez EA (2004) Procesos hidrosedimentologicos y meteorológicos relacionados con la sedimentación de un puerto. GEOACTA 29:69–80Google Scholar
  19. Freije RH, Marcovecchio JE (2004) Oceanografía física. In: Piccolo MC, Hoffmeyer MS (eds) Ecosistema del Estuario de Bahía Blanca. Instituto Argentino de Oceanografía, Bahía Blanca, Argentina, EdiUNS, pp 69–77Google Scholar
  20. Freije RH, Spetter CV, Marcovecchio JE, Popovich CA, Botté SE, Negrín V, Arias A (2008) Water chemistry and nutrients in the Bahia Blanca Estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on Integrated Coastal Zone Management in South America. IST, Lisbon, pp 243–256Google Scholar
  21. Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–430CrossRefGoogle Scholar
  22. Guinder VA, Popovich CA, Perillo GME (2009a) Particulate suspended matter concentrations in the Bahía Blanca Estuary, Argentina: Implication for the development of phytoplankton blooms. Estuar Coast Shelf S 85:157–165CrossRefGoogle Scholar
  23. Guinder VA, Popovich CA, Perillo GME (2009b) Short-term variability in the phytoplankton and physico-chemical variables in a high-tidal regime, Bahía Blanca estuary, Argentina. Braz J Oceanogr 57(3):249–258CrossRefGoogle Scholar
  24. Hansen HP, Grasshoff K (1983) Procedures for the automated determination of seawater constituents. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis, 2nd edn. Verlag Chemie, Weinheim, pp 362–379Google Scholar
  25. Hoffmeyer MS (1994) Seasonal succession of Copepoda in the Bahía Blanca estuary. Hydrobiologia 292:303–308CrossRefGoogle Scholar
  26. Jeuniaux C, Voss-Foucart MF (1991) Chitin biomass and production in the marine environment. Biochem Syst Ecol 19(5):347–356CrossRefGoogle Scholar
  27. Kharade SS, McBride MJ (2014) Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion System. J Bacteriol 196(5):961–970CrossRefGoogle Scholar
  28. Khoushab F, Yamabhai M (2010) Chitin Research Revisited. Mar Drugs 8:1988–2012CrossRefGoogle Scholar
  29. Kirchman DL, White J (1999) Hydrolysis and mineralization of chitin in the Delaware Estuary. Aquat Microb Ecol 18(2):187–196CrossRefGoogle Scholar
  30. Lara RJ, Neogi SB, Mohammad SI, Mahmud ZH, Demoz BB, Yamasaki S, Nair GB, Kattner G (2011) Vibrio cholerae in waters of the Sundarban mangroves: relationship with biogeochemical parameters and chitin content in seston size fractions. Wetlands Ecol Manage 19:109–119CrossRefGoogle Scholar
  31. Lee C, Howart RW, Howes BL (1980) Sterols in decomposing Spartina alternijloru and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen. Limnol Oceanogr 25(2):290–303CrossRefGoogle Scholar
  32. López Abbate MC, Barría de Caoa MS, Pettigrosso ME, Guinder VA, Duttoa MS, Berasateguia AA, Chazarreta CJ, Hoffmeyer MS (2016) Seasonal changes in microzooplankton feeding behavior under varying eutrophication level in the Bahía Blanca estuary (SW Atlantic Ocean). J Exp Mar Biol Ecol 481:25–33CrossRefGoogle Scholar
  33. Menendez M, Sanmarti N (2007) Geratology and descomposition of Spartina versicolor in a brackish Mediterranean marsh. Estuar Coast Shelf S 74(1–2):320–330CrossRefGoogle Scholar
  34. Menendéz MC, Delgado AL, Berasategui AA, Piccolo MC, Hoffmeyer MS (2016) Seasonal and tidal dynamics of water temperature, salinity, chlorophyll-a, suspended particulate matter, particulate organic matter, and zooplankton abundance in a shallow, mixed estuary (Bahia Blanca, Argentina). J Coastal Res 32:1051–1061CrossRefGoogle Scholar
  35. Montgomery MT, Welschmeyer NA, Kirchman DL (1990) Simple assay for chitin: application to sediment trap samples from the subarctic Pacific. Mar Ecol Prog Ser 64(3):301–308CrossRefGoogle Scholar
  36. Negrin VL, Spetter CV, Guinder VA, Perillo GME, Marcovecchio JE (2013) The role of Sarcocornia perennis and tidal flooding on sediment biogeochemistry in a South American wetland. Mar Biol Res 9:703–715CrossRefGoogle Scholar
  37. Nicol S, Hosie GW (1993) Chitin production by krill. Biochem Syst Ecol 21(2):181–184CrossRefGoogle Scholar
  38. Pan J, Bournod CN, Pizani NV, Cuadrado DG, Carmona NB (2013) Characterization of microbial mats from a siliciclastic tidal flat (Bahía Blanca estuary, Argentina). Geomicrobiol J 30(8):665–674CrossRefGoogle Scholar
  39. Parodi ER, Barria de Cao MS (2003) Benthic microalgal communities in the inner part of the Bahía Blanca estuary (Argentina): a preliminary qualitative study. Oceanol Acta 25:279–284CrossRefGoogle Scholar
  40. Perillo GME, Piccolo MC (1991) Tidal response in the Bahía Blanca Estuary, Argentina. J Coastal Res 7(2):437–449Google Scholar
  41. Perillo GME, Piccolo MC, Palma ED, Pérez DE, Pierini JO (2004) Oceanografía Física. In: Piccolo MC, Hoffmeyer MS (eds) Ecosistema del Estuario de Bahía Blanca. Instituto Argentino de Oceanografía (IADO-CONICET), Bahía Blanca, Argentina, pp 61–67Google Scholar
  42. Pettigrosso R, Popovich CA (2009) Phytoplankton-aloricate ciliate community in the Bahía Blanca Estuary (Argentina): seasonal patterns and trophic groups. Braz J Oceanogr 57(3):215–227CrossRefGoogle Scholar
  43. Piccolo MC, Perillo GME, Melo WD (2008) The Bahía Blanca estuary: An integrated overview of its geomorphology and dynamics. In: Neves R, Baretta J, Mateus M (eds) Perspectives on Integrated Coastal Zone Management in South America. IST, Lisbon, pp 219–229Google Scholar
  44. Popovich CA, Spetter CV, Marcovecchio JE, Freije RH (2008) Dissolved Nutrient Availability during Winter Diatom Bloom in a Turbid and Shallow Estuary (Bahía Blanca, Argentina). J Coast Res 24(1):95–102CrossRefGoogle Scholar
  45. Pruzzo C, Vezzulli L, Colwell RR (2008) Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10:1400–1410CrossRefGoogle Scholar
  46. Simon M, Grossart H-P, Schweitzer B, Helle Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211CrossRefGoogle Scholar
  47. Smucker RA (1991) Chitin primary production. Biochem Syst Ecol 19(5):357–369CrossRefGoogle Scholar
  48. Spetter CV, Buzzi NS, Fernández E, Cuadrado D, Marcovecchio JE (2015) Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina). Mar Pollut Bull 91:491–505CrossRefGoogle Scholar
  49. Technicon Autoanalyzer II (1973) Industrial Methods No. 186-72 WB, Silicates in water and seawater. Technicon Industrial Systems, TarrytownGoogle Scholar
  50. Tombesi NB, Pistonesi MF, Freije RH (2000) Physico-chemical characterisation and quality improvement evaluation of primary treated municipal waste water in the city of Bahía Blanca (Argentina). Ecol Environ Conser 6(2):147–151Google Scholar
  51. Treguer P, Le Corre P (1975) Manuel d’Analyse des Sels Nutritifs dans l’Eau de Mer Utilisation de l’Autoanalyser II Technicon), 2nd edn. Université de Bretagne Occidentale, Brest, FranceGoogle Scholar
  52. Tuner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27(1):57–102CrossRefGoogle Scholar
  53. Turner RE, Qureshi N, Rabalais NN, Dortch Q, Justic D, Shaw DF, Cope F (1998) Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc Natl Acad Sci USA 95:13048–13051CrossRefGoogle Scholar
  54. Vitale A et al (2012) Environmental monitoring station (EMAC). http://emac.iado-conicet.gob.ar/
  55. Vrba J, Kofronová-Bobková J, Pernthaler J, Símek K, Macek M, Psenner R (1997) Extracellular, low-affinity b-N-acetylglucosaminidases linked to the dynamics of diatoms and crustaceans in freshwater systems of different trophic degree. Int Rev Gesamten Hydrobiol 82:277–286CrossRefGoogle Scholar
  56. Wotton RS (2011) EPS (Extracellular Polymeric Substances), silk, and chitin: vitally important exudates in aquatic ecosystems. J N Am Benthol Soc 30(3):762–769CrossRefGoogle Scholar
  57. Wurzbacher CM, Grossart HP (2012) Improved detection and identification of aquatic fungi and chitin in aquatic environments. Mycologia 104(6):126–1271CrossRefGoogle Scholar
  58. Wurzbacher CM, Bärlocher F, Grossart HP (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149CrossRefGoogle Scholar
  59. Yoshikoshi K, Ko Y (1988) Structure and Function of the Peritrophic Membranes of Copepods. Nippon Suisan Gakk 54(7):1077–1082CrossRefGoogle Scholar
  60. Yu Ch, Lee AM, Bassler BL, Roseman S (1991) Chitin utilization by Marine Bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 266(36):24260–24267Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Florencia Biancalana
    • 1
    Email author
  • Melisa D. Fernandez-Severini
    • 1
  • Diana M. Villagran
    • 1
  • Anabela A. Berasategui
    • 1
  • Matías N. Tartara
    • 1
  • Carla V. Spetter
    • 1
    • 2
  • Valeria Guinder
    • 1
  • Jorge E. Marcovecchio
    • 1
  • Rubén J. Lara
    • 1
  1. 1.Instituto Argentino de Oceanografía (IADO)Universidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  2. 2.Departamento de QuímicaUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations