Advertisement

GIS based analysis of doline density on Taurus Mountains, Turkey

  • Muhammed Zeynel Öztürk
  • Mesut Şimşek
  • Mehmet Furkan Şener
  • Mustafa Utlu
Original Article
  • 129 Downloads

Abstract

The Taurus Mountain is one of the most important karstic region of the world and dolines are characteristics landforms of this area. However, the number and distribution of doline are unknown in the study area. The aims of this study are to explain the total number of dolines, distribution of doline density, effects of slope conditions and the change of doline orientation in the Taurus Mountains. According to the 1/25000 scale topographic maps utilized in this study, a total of 140,070 dolines were determined in a 13,189 km2 area on eleven high karstic plateaus bordered by steep slopes and deep gorges. These plateaus are substantially affected by highly-faulted and jointed systems and about 80% of each plateau is covered with neritic limestone. The dolines are located at an elevation between 10 and 2870 m. Average elevation of all dolines is 1842 m. 90% of dolines are located between 1300 and 2270 m and only 5% of dolines found under 1330 m. According to this results, the densest doline zone corresponds to the alpine and periglacial zone above the treeline. Doline density reaches > 100 doline/km2 on Mt. Anamas and the Seyran, Geyik and Akdağ ranges as well as the Taşeli plateau. Maximum density (187 doline/km2) is found on the Akdağ Mountains. However, 66% of the study area is characterized by low density, 29.9% with moderate density, 3.4% with high density and 0.7% with very high density. The highest doline densities are seen on gentle slopes (15°–25°/km2) and steep slopes (> 35°/km2) are limited doline distribution. According to the rose diagram formed by the azimuths of the long axis of the dolines at the Central Taurus, two direction are dominant in doline orientations (NW–SE and NE–SW). However, dominant directions are NE-SW at eastern, NE–SW and NW–SE at central and NW-SE at western part of the Central Taurus. According to this elongations, doline orientations are formed an arc which is formed by tectonic evolution of the Central Taurus.

Keywords

Doline density Spatial distribution Slope conditions Orientation Taurus Mountains Turkey 

Notes

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 115Y580). We express our sincere thanks for their financial support. We also thank Graham H. Lee for checking the English of the paper.

References

  1. Akay E, Uysal Ş (1988) Post-eocene tectonics of the central taurus mountains. Bull Miner Res Explor 108:23–34.  https://doi.org/10.19111/BMRE.86066 Google Scholar
  2. Aksu HH (2011) Tectonic Interpretation of Egirdir and Beysehir Lake Basins by Geophysical Studies. Süleyman Demirel UniversityGoogle Scholar
  3. Anica C-G, Mojca Z (2010) The Impact of human activities on dolines (sinkholes)—typical geomorphologic features on karst (Slovenia) and possibilities of their preservation. Geogr Pannonica 14:109–117CrossRefGoogle Scholar
  4. Atalay İ (1988) Toros Dağları’nda karstlaşma ve karstik alanların ekolojisi. Jeomorfol Derg 16:1–9Google Scholar
  5. Atalay İ, Efe R, Soykan A (2008) Mediterranean ecosystems of Turkey: ecology of the Taurus Mountains. In: Efe R, Cravins G, Ozturk M, Atalay I (eds) Natural environment and culture in the mediterranean region. Cambridge Scholars Publishing, Cambridge, pp 3–38Google Scholar
  6. Bárány-Kevei I (1999) Microclimate of karstic dolines. Acta Climatol 32–33:19–27Google Scholar
  7. Batori Z, Koermoeczi L, Erdoes L et al (2012) Importance of karst sinkholes in preserving relict, mountain, and wet-woodland plant species undersub-Mediterranean climate: a case study from southern Hungary. J Cave Karst Stud 74:127–134CrossRefGoogle Scholar
  8. Bauer C (2015) Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology 250:78–88.  https://doi.org/10.1016/j.geomorph.2015.08.015 CrossRefGoogle Scholar
  9. Benac Č, Juračić M, Matičec D et al (2013) Fluviokarst and classical karst: examples from the Dinarics (Krk Island, Northern Adriatic, Croatia). Geomorphology 184:64–73.  https://doi.org/10.1016/j.geomorph.2012.11.016 CrossRefGoogle Scholar
  10. Biju-Duval B, Dercourt J, Le Pichon X (1977) From the tethys ocean to the mediterranean seas: a plate tectonic model of the evolution of the western alpine system. In: Symposium on the structural history of the Mediterranean basins. Editions Technip, pp 143–164Google Scholar
  11. Blumenthal MM (1952) Torosların Yüksek Aladağ Silsilesinin coğrafyası, stratigraphisi ve tektoniği hakkında yeni etüdler. General Directorate for Mineral Research and Exploration (MTA), AnkaraGoogle Scholar
  12. Bočić N, Pahernik M, Mihevc A (2015) Geomorphological significance of the palaeodrainage network on a karst plateau: the Una–Korana plateau, Dinaric karst. Croatia Geomorphol 247:55–65.  https://doi.org/10.1016/j.geomorph.2015.01.028 CrossRefGoogle Scholar
  13. Bruno E, Calcaterra D, Parise M (2008) Development and morphometry of sinkholes in coastal plains of Apulia, southern Italy. Preliminary sinkhole susceptibility assessment. Eng Geol 99:198–209.  https://doi.org/10.1016/j.enggeo.2007.11.017 CrossRefGoogle Scholar
  14. Bruxelles L, Colonge D, Salgues T (2006) Morphologie et remplissage des dolines du Causse de Martel d’après les observations réalisées au cours du diagnostic archéologique de l’aérodrome de Brive-Souillac (Corrèze et Lot). Karstologia 47:21–32Google Scholar
  15. Car J (2001) Structural bases for shaping of dolines. Acta Carsologica 30:239–256Google Scholar
  16. Closson D, Karaki NA (2009) Salt karst and tectonics: sinkholes development along tension cracks between parallel strike-slip faults, Dead Sea, Jordan. Earth Surf Process Landf 34:1408–1421.  https://doi.org/10.1002/esp.1829 CrossRefGoogle Scholar
  17. Daura J, Sanz M, Josep Forn SJ et al (2014) Karst evolution of the Garraf Massif (Barcelona, Spain): doline formation, chronology and archaeo-palaeontological archives. J Cave Karst Stud 76:69–87.  https://doi.org/10.4311/2011ES0254 CrossRefGoogle Scholar
  18. Day M (1983) Doline morphology and development in Barbados. Ann Assoc Am Geogr 73:206–219.  https://doi.org/10.1111/j.1467-8306.1983.tb01408.x CrossRefGoogle Scholar
  19. Denizman C (2003) Morphometric and spatial distribution parameters of karstic depressions, Lower Suwannee River Basin, Florida. J Cave Karst Stud 65:29–35Google Scholar
  20. Dirik K, Göncüoglu MC (1996) Neotectonic characteristics of Central Anatolia. Int Geol Rev 38:807–817.  https://doi.org/10.1080/00206819709465363 CrossRefGoogle Scholar
  21. Dumont JF, Kerey E (1975) Eğridir gölü güneyinin temel jeolojik etüdü. Türkiye Jeol Kurumu Bülteni 18:160–174Google Scholar
  22. Ekmekci M (2003) Review of Turkish karst with emphasis on tectonic and paleogeographic controls. Acta Carsologica 32:205–218.  https://doi.org/10.3986/AC.V32I2.349 Google Scholar
  23. Ekmekci M, Nazik L (2004) Evolution of Golpazari-Huyuk karst system (Bilecik-Turkey): indications of morpho-tectonic controls. Int J Speleol.  https://doi.org/10.5038/1827-806X.33.1.5 Google Scholar
  24. Elhatip H (1997) The influence of karst features on environmental studies in Turkey. Environ Geol 31:27–33.  https://doi.org/10.1007/s002540050160 CrossRefGoogle Scholar
  25. Erinç S (1960) On the karst features in Turkey. Turkish Geogr Rev 20:1–14Google Scholar
  26. Faivre S, Pahernik M (2007) Structural influences on the spatial distribution of dolines, Island of Brač, Croatia. Zeitschrift für Geomorphol 51:487–503.  https://doi.org/10.1127/0372-8854/2007/0051-0487 CrossRefGoogle Scholar
  27. Ferrarese F, Sauro U, Tonello C (1998) The Montello Plateau. Karst evolution of an alpine neotectonic morphostructure. Zeitschrift für Geomorphol Suppl 109:41–62Google Scholar
  28. Ford D, Williams P (2007) Karst Hydrogeology and Geomorphology. Wiley, West SussexCrossRefGoogle Scholar
  29. Gams I (2000) Doline morphogenetic processes from global and local viewpoints. Acta Carsologica 29:123–138Google Scholar
  30. Glover C, Robertson A (1998) Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics 298:103–132.  https://doi.org/10.1016/S0040-1951(98)00180-2 CrossRefGoogle Scholar
  31. Günay G (2010) Case study: geological and hydrogeological properties of Turkish karst and major karstic springs. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs. Butterworth-Heinemann, Boston, MA, pp 479–497CrossRefGoogle Scholar
  32. Gunn J, Günay G (2004) Turkey. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor and Francis Group, Abingdon, pp 1583–1589Google Scholar
  33. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  34. Iijima Y, Shinoda M (2000) Seasonal changes in the cold-air pool formation in a subalpine hollow, central Japan. Int J Climatol 20:1471–1483.  https://doi.org/10.1002/1097-0088(200010)20:12%3C1471::AID-JOC554%3E3.0.CO;2-6 CrossRefGoogle Scholar
  35. Jeanpert J, Genthon P, Maurizot P et al (2016) Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: the case of southern Grande Terre in New Caledonia (SW Pacific). Earth Surf Process Landforms 41:1854–1868.  https://doi.org/10.1002/esp.3952 CrossRefGoogle Scholar
  36. Jennings JN (1975) Doline morphometry as a morphogenetic tool: New Zealand examples. N Z Geog 31:6–28.  https://doi.org/10.1111/j.1745-7939.1975.tb00793.x CrossRefGoogle Scholar
  37. Karaoğlan F (2016) Tracking the uplift of the Bolkar Mountains (south-central Turkey): evidence from apatite fission track thermochronology. Turkish J Earth Sci 25:64–80.  https://doi.org/10.3906/yer-1504-17 CrossRefGoogle Scholar
  38. Kissel C, Averbuch O, de Lamotte DF et al (1993) First paleomagnetic evidence for a post-Eocene clockwise rotation of the Western Taurides thrust belt east of the Isparta reentrant (southwestern Turkey). North-Holland Pub. Co, AmsterdamGoogle Scholar
  39. Klimchouk A, Bayari S, Nazik L, Törk K (2006) Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, Central Taurus, Turkey. Acta Carsologica 35:111–121Google Scholar
  40. Kobal M, Bertoncelj I, Pirotti F et al (2015) Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover—case study of a high karst area in the Dinaric Mountains. PLoS One 10:e0122070.  https://doi.org/10.1371/journal.pone.0122070 CrossRefGoogle Scholar
  41. Koçyiğit A (1981) Isparta büklümünde (Batı Toroslar) Toros Karbonat Platformunun evrimi. Bull Geol Soc Turkey 24:15–23Google Scholar
  42. Koçyiğit A (1984) Güneybatı Türkiye ve yakın dolayında levha içi yeni tektonik gelişim. Türkiye Jeol Kurumu Bülteni 27:1–16Google Scholar
  43. Koçyiğit A, Beyhan A (1998) A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284:317–336.  https://doi.org/10.1016/S0040-1951(97)00176-5 CrossRefGoogle Scholar
  44. Koçyiğit A, Özacar AA (2003) Extensional neotectonic regime through the NE Edge of the Outer Isparta Angle, SW Turkey: New field and seismic data. Turkish J Earth Sci 12:67–90Google Scholar
  45. Koçyiğit A, Ünay E, Saraç G (2000) Episodic graben formation and extensional neotectonic regime in West Central Anatolia and the Isparta Angle: a case study in the Akşehir-Afyon Graben, Turkey. Geol Soc London Spec Publ 173:405–421.  https://doi.org/10.1144/GSL.SP.2000.173.01.19 CrossRefGoogle Scholar
  46. Konak N, Şenel M (2002) Denizli Sheet of the Geological Map of Turkey, 1:500,000 scale. Mineral Research and Exploration InstituteGoogle Scholar
  47. Jemcov I, Cupkovic T, Pavlovic R, Stevanovic Z (2001) An example of the influence of fault patterns on karst development. In: Günay G, Johnson KS, Ford D, Johnson AI (eds) Present state and future trends of karst studies: proceedings of the 6th international symposium and field seminar, Marmaris, Turkey, 17–26 September 2000, pp 703–709Google Scholar
  48. Lewin J, Woodward J (2009) Karst geomorphology and environmental change. In: Woodward J (ed) The Physical Geography of the mediterranean. Oxford University Press, Oxford, pp 287–317Google Scholar
  49. Livermore R, Smith A (1984) Some boundary conditions for the evolution of the Mediterranean region. In: Stanley D, Wezel C (eds) Geological evolution of the mediterranean basin. Springer, New York, pp 83–110Google Scholar
  50. Metz K (1956) Aladağ ve Karanfil Dağı’nın yapısı ve bunların Kilikya Torosu tesmiye edilen batı kenarları hakkında malumat husuli için yapılan jeolojik etüd. Bull Miner Res Explor 48:63–75Google Scholar
  51. Mihljevic D (1994) Analysis of spatial characteristics in distribution of sink-holes, as a geomorphological indicator of recent deformation of geological structure. Acta Geogr Croat 29:29–36Google Scholar
  52. Nazik L (1986) Beyşehir Gölü yakın güneyi karst jeomorfolojisi ve karstik parametrelerin incelenmesi. Jeomorfol Derg 14:65–77Google Scholar
  53. Nazik L, Poyraz M (2017) Türkiye karst jeomorfolojisi genelini karakterize eden bir bölge: orta Anadolu Platoları karst kuşağı. TÜRK COĞRAFYA DERGİSİ.  https://doi.org/10.17211/tcd.300414 Google Scholar
  54. Nazik L, Tuncer K (2010) Türkiye karst morfolojisinin bölgesel özellikleri. Türk Speleoloji Derg 1:7–19Google Scholar
  55. Orndorff RC, Weary DJ, Lagueux KM (2000) Geographic information systems analysis of geologic controls on the distribution of dolines in the Ozarks of South-Central Missouri, USA. Acta Carsologica 29:161–175Google Scholar
  56. Özgül N (1976) Toroslar’ın bazı temel jeoloji özellikleri. Türkiye Jeol Kurumu Bülteni 19:65–78Google Scholar
  57. Özgül N (1984) Stratigraphy and tectonic evolution of the central Taurides. In: Tekeli O, Göncüoğlu M (eds) Geology of the Taurus Belt. MTA, Bucharest, pp 77–90Google Scholar
  58. Ozkan K, Gulsoy S, Mert A et al (2010) Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. J Environ Biol 31:51–60Google Scholar
  59. Öztürk MZ, Şimşek M, Utlu M (2015) Tahtalı Dağları (Orta Toroslar) karst platosu üzerinde dolin ve uvala gelişiminin CBS tabanlı analizi. Türk Coğrafya Derg 65:59–68.  https://doi.org/10.17211/tcd.22648 Google Scholar
  60. Öztürk MZ, Çetinkaya G, Aydın S (2017a) Climate types of Turkey according to Köppen-Geiger climate classification. Coğrafya Dergisi/J Geogr 35:17–27Google Scholar
  61. Öztürk MZ, Şimşek M, Utlu M, Şener MF (2017b) Karstic depressions on Bolkar Mountain plateau, Central Taurus (Turkey): distribution characteristics and tectonic effect on orientation. Turk J Earth Sci 26:302–313.  https://doi.org/10.3906/yer-1702-3 CrossRefGoogle Scholar
  62. Öztürk MZ, Şener MF, Şener M, Şimşek M (2018) Structural controls on distribution of dolines on Mount Anamas (Taurus Mountains, Turkey). Geomorphology 317:107–116.  https://doi.org/10.1016/J.GEOMORPH.2018.05.023 CrossRefGoogle Scholar
  63. Pahernik M (2012) Spatial density of dolines in the Croatian Territory. Croat Geogr Bull 74:5–26Google Scholar
  64. Palmquist RC (1977) Distribution and density of dolines in areas of mantled karst. In: Dilamarter RR, Csallany SC (eds) Hydrologic problems in karst regions. Western Kentucky University, Bowling Green, Kentucky, pp 117–129Google Scholar
  65. Pardo-Igúzquiza E, Durán JJ, Dowd PA (2013) Automatic detection and delineation of karst terrain depressions and its application in geomorphological mapping and morphometric analysis. Acta Carsologica 42:17–24.  https://doi.org/10.3986/ac.v42i1.637 CrossRefGoogle Scholar
  66. Peros M, Collins S, Agosta A et al (2017) Multistage 8.2 kyr event revealed through high-resolution XRF core scanning of Cuban sinkhole sediments. Geophys Res Lett.  https://doi.org/10.1002/2017GL074369 Google Scholar
  67. Plan L, Decker K (2006) Quantitative karst morphology of the Hochschwab plateau, Eastern Alps, Austria. Zeitschrift für Geomorphol Suppl 147:29–54Google Scholar
  68. Poisson A, Wernli R, Sağular EK, Temiz H (2003) New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geol J 38:311–327.  https://doi.org/10.1002/gj.958 CrossRefGoogle Scholar
  69. Robertson A, Poisson A, Akinci Ö (2003) Developments in research concerning Mesozoic-Tertiary Tethys and neotectonics in the Isparta Angle, SW Turkey. Geol J 38:195–234.  https://doi.org/10.1002/gj.953 CrossRefGoogle Scholar
  70. Sauro U (2012) Closed depression in karst area. In: White W, Culver D (eds) Encyclopedia of caves. Academic Press, Cambridge, pp 140–155CrossRefGoogle Scholar
  71. Sauro U (2013) Landforms of mountainous karst in the middle latitudes: reflections, trends and research problems. Acta Carsologica 42:5–16.  https://doi.org/10.3986/ac.v42i1.629 CrossRefGoogle Scholar
  72. Scherler L, Tütken T, Becker D (2014) Carbon and oxygen stable isotope compositions of late Pleistocene mammal teeth from dolines of Ajoie (Northwestern Switzerland). Quat Res 82:378–387.  https://doi.org/10.1016/j.yqres.2014.05.004 CrossRefGoogle Scholar
  73. Schildgen T, Yıldırım C, Cosentino D, Strecker M (2014) Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Science Rev 128:147–168.  https://doi.org/10.1016/j.earscirev.2013.11.006 CrossRefGoogle Scholar
  74. Şenel M (2002) 1/500000 scaled geology map of Turkey, Konya sheet. Mineral Research and Exploration Institute, AnkaraGoogle Scholar
  75. Telbisz T, Dragušica D, Nagy B (2009) Doline morphometric analysis and karst morphology of Biokovo Mt (Croatia) based on field observations and digital terrain analysis. Hrvat Geogr Glas 71:5–22CrossRefGoogle Scholar
  76. Theilen-Willige B, Malek H, Charif A et al (2014) Remote sensing and GIS contribution to the investigation of karst landscapes in NW-Morocco. Geosciences 4:50–72.  https://doi.org/10.3390/geosciences4020050 CrossRefGoogle Scholar
  77. Ulu Ü (2002) Adana Sheet of the Geological Map of Turkey, 1:500,000 scale. Mineral Research and Exploration Institute, AnkaraGoogle Scholar
  78. Veress M (2017) Solution DOLINE development on GLACIOKARST in alpine and Dinaric areas. Earth-Sci Rev 173:31–48.  https://doi.org/10.1016/j.earscirev.2017.08.006 CrossRefGoogle Scholar
  79. Waltham AC, Fookes PG (2003) Engineering classification of karst ground conditions. Q J Eng Geol Hydrogeol 36:101–118CrossRefGoogle Scholar
  80. Whiteman CD, Haiden T, Pospichal B et al (2004) Minimum temperatures, diurnal temperature ranges, and temperature inversions in limestone sinkholes of different sizes and shapes. J Appl Meteorol 43:1224–1236CrossRefGoogle Scholar
  81. Yazgan E, Chessex R (1991) Geology and Tectonic Evolution of the Southeastern Taurides in the Region of Malatya. Turk Assoc Petrol Geol., AnkaraGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geography, Faculty of Arts and SciencesÖmer Halisdemir UniversityNigdeTurkey
  2. 2.Department of Geography, Faculty of Arts and SciencesHatay Mustafa Kemal UniversityHatayTurkey
  3. 3.Department of Geography, Faculty of LettersIstanbul UniversityIstanbulTurkey

Personalised recommendations