Assessment of the efficacy of ethyl silicate and dibasic ammonium phosphate consolidants in improving the durability of two building sandstones from Andalusia (Spain)

Thematic Issue
  • 24 Downloads
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

We performed a comparative study of the effectiveness of ethyl silicate (TEOS) and dibasic ammonium phosphate (DAP) on two varieties of natural stone used in the architectural heritage of Andalusia (Spain): Arenisca Ronda (calcarenite) and Molinaza Roja (arkose). The consolidants were applied on healthy samples with a paintbrush, a method frequently used in real building works, and the study was divided into three phases: (a) petrophysical analysis and analysis of the porous system prior to application of the consolidants; (b) evaluation of the changes that have taken place after each application; (c) evaluation of the durability of the two varieties of treated rock when subjected to the salt crystallization ageing test. The results obtained show that there is a compositional affinity between the consolidant and the rock and that this affinity has an influence on the efficacy of the product. This explains why DAP performed better in Arenisca Ronda, which is rich in carbonates, while TEOS was more effective for Molinaza Roja, which is rich in silicates. The change in the porous system was not important, although it showed positive aspects such as an improvement in the drainage of the water during the drying process. We also measured the level of penetration of both products, which reached a depth of 3–5 mm depending on the product applied. We also noticed a negative result, namely the change in the colour of both rocks after treatment with the consolidants, especially in the case of DAP. Finally, the stones were subjected to a salt crystallization test, the results of which show that the consolidants increased the durability of the materials.

Keywords

Carbonated sandstone Siliceous sandstone Dibasic ammonium phosphate (DAP) Ethyl silicate (TEOS) Consolidation 

Notes

Acknowledgements

This study was financially supported by Research Group RNM179 of the Junta de Andalucía and by Research Project MAT2016-75889-R. We are grateful to Nigel Walkington for his assistance in translating the original text.

References

  1. Benavente D, García del Cura MA, Garcia-Guinea J, Sanchez-Moral S, Ordoñez S (2004) Role of pore structure in salt crystallization in unsaturated porous stone. J Cryst Growth 260:534–544CrossRefGoogle Scholar
  2. Borsoi G, Lubelli B, van Hees R, Veiga R, Santos Silva A, Colla L, Fedele L, Tomasin P (2016) Effect of solvent on nanolime transport within limestone: how to improve in-depth deposition. Colloid Surface A 497:171–181CrossRefGoogle Scholar
  3. Carmichael RS (1989) Practical handbook of physical properties of rocks and mineral. CRS Press Inc, Boca RatonGoogle Scholar
  4. Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci 392:42–49CrossRefGoogle Scholar
  5. Clementson Lope JA (2012) Caracterización de las propiedades de la arenisca roja de Montoro, sus alteraciones y su aplicabilidad para la construcción. Ph.D. thesis, University of Cordoba, 308 ppGoogle Scholar
  6. Clementson Lope JA, Montealegre L, Barrios-Neira J (2007) Tipología de alteraciones en la arenisca roja de Montoro. XXVII Reunión de la Sociedad Española de Mineralogía, mala no 7, 86 ppGoogle Scholar
  7. Clementson Lope JA, Barrios Neira J, Montealegre Contreras L (2009) Determinación de la Mineralogía, Composición Química y Textura de material pétreo empleado en los monumentos de Montoro, (Córdoba). Sociedad Española de Mineralogía, macla no 11Google Scholar
  8. Colella A, Di Benedetto C, Calcaterra D, Cappelletti P, D’Amore M, Di Martire D, Graziano SF, Papa L, de Gennaro M, Langella A (2017) The Neapolitan Yellow Tuff: an outstanding example of heterogeneity. Constr Build Mater 136:31–373CrossRefGoogle Scholar
  9. Cultrone G, De La Torre MJ, Sebastian E, Cazalla O (2003) Evaluación de la durabilidad de ladrillos mediante técnicas destructivas (TD) y no-destructivas (TND). Mater Constr 53(269):41–59CrossRefGoogle Scholar
  10. De Cock T, Turmel A, Frontenau G, Cnudde V (2017) Rock fabric heterogeneity and its influence on the petrophysical properties of a building limestone: Lede stone (Belgium) as an example. Eng Geol 216:31–41CrossRefGoogle Scholar
  11. De Rosario I, Elhaddad F, Pan A, Benavides R, Rivas T, Mosquera MJ (2015) Effectiveness of a novel consolidant on granite: laboratory and in situ results. Constr Build Mater 76:140–149CrossRefGoogle Scholar
  12. Doehn E, Price CA (eds) (2010) Stone conservation: an overview of current research, 2nd edn. Getty Conservation Institute, Los AngelesGoogle Scholar
  13. Durán Suárez JA (1996) Estudio de consolidantes y protectivos para la restauración de material pétreo. Ph.D. thesis, University of Granada, 359 ppGoogle Scholar
  14. Espinosa RM, Hamilton A, McNall M, Whiteker K, Scherer GW (2001) The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulphate. J Mater Res 26:1472–1481CrossRefGoogle Scholar
  15. Everett DM (1961) The thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:2205–2211Google Scholar
  16. Ferreira Pinto AP, Delgado Rodrigues J (2008) Stone consolidation: the role of treatment procedures. J Cult Herit 9:38–53CrossRefGoogle Scholar
  17. Ferreira Pinto AP, Delgado Rodrigues J (2012) Consolidation of carbonate stones: influence of treatment procedures on the strengthening action of consolidants. J Cult Herit 13:154–166CrossRefGoogle Scholar
  18. Fort R (2006) Utilización de la piedra natural en restauración. In: Cañaveras JC (ed) García del Cura MA, vol 2. Utilización de rocas y minerales industriales. Sociedad Española de Mineralogía, Universidad de Alicante, Madrid, pp 155–182Google Scholar
  19. Franzoni E, Graziani G, Sassoni E (2015a) TEOS-based treatments for stone consolidation: acceleration of hydrolysis-condensation reactions by poulticing. Sol–Gel Sci Technol 74:398–405CrossRefGoogle Scholar
  20. Franzoni E, Sassoni E, Graziani G (2015b) Brushing, poultice or immersion? The role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone. J Cult Herit 16:173–184CrossRefGoogle Scholar
  21. Gauri KL, Bandyopadhyay JK (1999) Carbonate stone: chemical behavior, durability and conservation. Wiley Interscience, New YorkGoogle Scholar
  22. Gómez-Heras M, McCabe S (2015) Weathering of stone-built heritage: a lens through which to read the Anthropocene. Anthropocene 11:1–13CrossRefGoogle Scholar
  23. Grossi CM, Brimblecombe P, Esbert RM, Alonso FJ (2007) Color changes in architectural limestones from pollution and cleaning. Color Res Appl 32:320–331CrossRefGoogle Scholar
  24. Guydader J, Denis A (1986) Propagation des ondes dans les roches anisotropies sous contrainte évaluation de la qualité des schistes ardoisers. Bull Eng Geol 33:49–55CrossRefGoogle Scholar
  25. Illescas Salinas JF (2012) Nuevos nanomateriales para la conservación del patrimonio monumental andaluz. Ph.D. thesis, University of Cadiz, 296 ppGoogle Scholar
  26. López-Arce P (2012) Daños por cristalización de sales. En: La conservación de los geomateriales utilizados en el patrimonio. Programa Geomateriales, Universidad Complutense de Madrid, Madrid, pp 97–105Google Scholar
  27. Ludovico-Marques M, Chastre C (2014) Effect of consolidation treatments on mechanical behaviour of sandstone. Constr Build Mater 70:473–482CrossRefGoogle Scholar
  28. Matteini M (2008) Inorganic treatments for the consolidation and protection of stone artefacts and mural paintings. Istituto per la Conservazione e la Valorizzazione dei Beni Culturali (ICVBC), Consiglio Nazionale delle Ricerche, FirenzeGoogle Scholar
  29. Matteini M, Rescic S, Fratini F, Botticelli G (2011) Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage: preliminary research. Int J Archit Herit 5:717–736CrossRefGoogle Scholar
  30. Molina E, Cultrone G (2014) Consolidación de la piedra natural con hidroxiapatito: evaluación de los cambios en el sistema poroso. Macla 19, 2 ppGoogle Scholar
  31. Molina E, Benavente D, Sebastian E, Cultrone G (2015) The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Eng Geol 197:67–81CrossRefGoogle Scholar
  32. Molina E, Rueda-Quero L, Benavente D, Burgos-Cara A, Ruiz-Agudo E, Cultrone G (2017) Gypsum crust as a source of calcium for the cleaning and consolidation of carbonate stones using a calcium phosphate-based consolidant. Constr Build Mater 143:298–311CrossRefGoogle Scholar
  33. Molina Piernas E (2015) Influencia de la textura, del sistema poroso y del acabado superficial en la durabilidad de arensicas y travertino explotados en Andalucía y utilizados en construcción. Ph.D. thesis, Universidad de Granada, 322 ppGoogle Scholar
  34. Molina Piernas E, Cultrone G, Sebastián Pardo E (2011) Descripción petrográfica y química de dos materiales pétreos empelados en el Patrimonio Construido de Andalucía. Macla 15:133–134Google Scholar
  35. Naidu S, Liu C, Scherer GW (2015) Hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants. J Cult Herit 16:94–101CrossRefGoogle Scholar
  36. NORMAL 29/88 (1988) Misura dell’indice di asciugamento (drying index). CNR-ICR, RomaGoogle Scholar
  37. Pamplona M, Kosher M, Snethlage R, Aires Barros L (2007) Drilling resistance: overview and outlook. Z dt Ges Geowiss 158:665–676Google Scholar
  38. RILEM (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Commission 25-PEM: Protection et Erosion des Monuments, 175-253Google Scholar
  39. Rodrigues JD, Grossi A (2007) Indicators and ratings for the compatibility assessments of conservation actions. J Cult Herit 8:32–43CrossRefGoogle Scholar
  40. Sassoni E, Naidu S, Scherer W (2011) The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J Cult Herit 12:346–355CrossRefGoogle Scholar
  41. Sassoni E, Franzoni E, Pigino B, Scherer GW, Naidu S (2012) Effectiveness of hydroxyapatite as a consolidating treatment for lithotypes with varying carbonated content and porosity. 5th Int Cong Sci Technol. Safeguard of Cultural Heritage in the Mediterranean Basin, Istanbul, pp 338–343Google Scholar
  42. Sassoni E, Franzoni E, Pigino B, Scherer GW, Naidu S (2013) Consolidation of calcareous and siliceous sandstones by hydroxyapatite: comparison with a TEOS-based consolidant. J Cult Herit 14:103–108CrossRefGoogle Scholar
  43. Sassoni E, Graziani G, Franzoni E (2015) Repair of sugaring marble by ammonium phosphate: comparison with ethyl silicate and ammonium oxalate and pilot application to historic artifact. Mater Des 88:1145–1157CrossRefGoogle Scholar
  44. Sassoni E, Graziani G, Franzoni E (2016) An innovative phosphate-based consolidant for limestone. Part 1: effectiveness and compatibility in comparison with ethyl silicate. Constr Build Mater 15:918–930CrossRefGoogle Scholar
  45. Snethlage R, Sterflinger K (2011) Stone conservation, Chapter 7. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, New York, pp 11–95.  https://doi.org/10.1007/978-3-642-14475-2 Google Scholar
  46. UNE-EN 12370 (2002) Natural stone test methods. Determination of resistance to salt crystallization. AENOR, MadridGoogle Scholar
  47. UNE-EN 13755 (2008) Natural stone test methods. Determination of water absorption at atmospheric pressure. AENOR, MadridGoogle Scholar
  48. UNE-EN 14579 (2005) Natural stone test methods. Determination of sound speed propagation. AENOR, MadridGoogle Scholar
  49. UNE-EN 15886 (2011) Conservation of cultural property. Test methods. Colour measurement of surfaces. AENOR, MadridGoogle Scholar
  50. UNE-EN 1936 (2007) Natural stone test methods. Determination of real density and apparent density, and of total and open porosity. AENOR, MadridGoogle Scholar
  51. Vera JA (2004) Geología de España. SGE–IGME, MadridGoogle Scholar
  52. Vergès-Belmin V (ed) (2008) Illustrated glossary on stone deterioration patterns = Glossaire illustré sur les formes d’altération de la pierre. English-French ed. Monuments & Sites 15. Paris: ICOMOS (International Council on Monuments and Sites) and ISCS (International Scientific Committee for Stone)Google Scholar
  53. Wheeler G (2005) Alkoxysilanes and the consolidation of stone. The Getty Conservation Institute, Los AngelesGoogle Scholar
  54. Winkler EM (1997) Stone in architecture—properties durability. Springer, New YorkGoogle Scholar
  55. Zhang H, Liu Q, Liu T, Zhang B (2013) The preservation damage of hydrophobic polymer coating materials conservation of stone relics. Prog Org Coat 76:1127–1134CrossRefGoogle Scholar
  56. Zornoza-Indart A, Lopez-Arce P (2017) Silica nanoparticles (SiO2): influence of relative humidity in stone consolidation. J Cult Herit 18:258–270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Structural and Geotechnical EngineeringPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro de Excelencia en Geotermia de los Andes (CEGA, FONDAP-CONICYT)Universidad de ChileSantiagoChile
  3. 3.Department of Mineralogy and Petrology, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations