Advertisement

Journal of Maxillofacial and Oral Surgery

, Volume 18, Issue 2, pp 299–306 | Cite as

The Interaction Between Craniofacial Computed Tomographic Dimensional Parameters and BMI in Obstructive Sleep Apnea

  • Daniel Ben Ner
  • Narin Nard Carmel-Neiderman
  • Dan M. Fliss
  • Noa Haas
  • Eyal RosenzweigEmail author
Original Article
  • 22 Downloads

Abstract

Introduction

The impact of the dimensional parameters of the pharyngeal bony frame by its length, width and the position of the hyoid upon the severity of obstructive sleep apnea syndrome (OSAS) has not been investigated in depth. Interactions of those parameters with body mass index (BMI) and their overall reciprocal effect on OSAS severity have also not been established.

Materials and Methods

This retrospective cross-sectional study was conducted on 108 male OSAS patients followed in OSAS outpatient clinics between November 2014 and October 2015. They all underwent a polysomnography test, and an apnea–hypopnea index (AHI) was calculated. They also underwent an upper airway computerized tomographic scan in which three craniofacial parameters were evaluated: inter-pterygoid distance (IPD), hard palate-to-hyoid (HP-H) distance, and gnathion plane-to-hyoid (GP-H) distance.

Results

A longer pharynx and an inferiorly placed hyoid bone correlated with the AHI (r = 0.33, p = 0.001 and r = 0.226, p = 0.03, respectively). GP-H correlated with body mass index (BMI) (r = 0.3243, p < 0.001), while HP-H and IPD did not. We found an interaction between BMI and HP-H, but none between GP-H and BMI. IPD did not correlate with OSAS severity, but it correlates with the age of the OSAS patients (r = 0.235, p = 0.015).

Conclusion

Pharynx length and hyoid position have significant effects upon OSAS severity, and they interact differently with BMI in terms of those effects. Hard palate width increases with age but has no correlation with OSAS severity.

Keywords

Obstructive sleep apnea Computed tomography Imaging Obesity Upper airway dimensions Pharyngeal dimensions 

Notes

Acknowledgments

This work was performed in fulfillment of Daniel Ben Ner’s M.D. thesis requirements of the Sackler Faculty of Medicine, Tel Aviv University, Israel. We kindly ask to acknowledge Esther Eshkol for her editorial support.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest to disclose.

References

  1. 1.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235CrossRefGoogle Scholar
  2. 2.
    Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053CrossRefGoogle Scholar
  3. 3.
    Xu JX, Cai W, Sun JF, Liao WJ, Liu Y, Xiao JR et al (2015) Serum advanced glycation end products are associated with insulin resistance in male nondiabetic patients with obstructive sleep apnea. Sleep Breath 19(3):827–833CrossRefGoogle Scholar
  4. 4.
    Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ et al (2008) Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 31(8):1071–1078Google Scholar
  5. 5.
    Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J (1999) The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med 340(11):847–851CrossRefGoogle Scholar
  6. 6.
    Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112CrossRefGoogle Scholar
  7. 7.
    Young T, Peppard PE, Taheri S (2005) Excess weight and sleep-disordered breathing. J Appl Physiol 99(4):1592–1599CrossRefGoogle Scholar
  8. 8.
    Romero-Corral A, Caples SM, Lopez-Jimenez F, Somers VK (2010) Interactions between obesity and obstructive sleep apnea: implications for treatment. Chest 137(3):711–719CrossRefGoogle Scholar
  9. 9.
    Peppard PE, Young T, Palta M, Dempsey J, Skatrud J (2000) Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 284(23):3015–3021CrossRefGoogle Scholar
  10. 10.
    Shelton KE, Woodson H, Gay S, Suratt PM (1993) Pharyngeal fat in obstructive sleep apnea. Am Rev Respir Dis 148(2):462–466CrossRefGoogle Scholar
  11. 11.
    Schwab RJ, Pasirstein M, Pierson R, Mackley A, Hachadoorian R, Arens R et al (2003) Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 168(5):522–530CrossRefGoogle Scholar
  12. 12.
    Kobayashi H, Kato I, Terabayashi T (1988) Anthropometric relevance on sublabial transseptal transsphenoidal hypophysectomy in the Asiatic type of skull. ORL J Otorhinolaryngol Relat Spec 50(5):340–344CrossRefGoogle Scholar
  13. 13.
    Patel Manmohan (2012) Study of the distance between the free edges of Medial Pterygoid Plates in the Skulls of Central Indian Population. Int J Biol Med Res 3(2):1520–1524Google Scholar
  14. 14.
    Mendelson B, Wong C-H (2012) Changes in the Facial Skeleton with aging: implications and clinical applications in facial rejuvenation. Aesthet Plast Surg 36(4):753–760.  https://doi.org/10.1007/s00266-012-9904-3 CrossRefGoogle Scholar
  15. 15.
    Chi L, Comyn FL, Mitra N, Reilly MP, Wan F, Maislin G et al (2011) Identification of craniofacial risk factors for obstructive sleep apnoea using three-dimensional MRI. Eur Respir J 38(2):348–358CrossRefGoogle Scholar
  16. 16.
    Buchanan A, Cohen R, Looney S, Kalathingal S, De Rossi S (2016) Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls. Imaging Sci Dent 46(1):9–16CrossRefGoogle Scholar
  17. 17.
    Malhotra A, Huang Y, Fogel RB, Pillar G, Edwards JK, Kikinis R et al (2002) The male predisposition to pharyngeal collapse: importance of airway length. Am J Respir Crit Care Med 166(10):1388–1395CrossRefGoogle Scholar
  18. 18.
    Genta PR, Schorr F, Eckert DJ, Gebrim E, Kayamori F, Moriya HT et al (2014) Upper airway collapsibility is associated with obesity and hyoid position. Sleep 37(10):1673–1678CrossRefGoogle Scholar
  19. 19.
    Barkdull GC, Kohl CA, Patel M, Davidson TM (2008) Computed tomography imaging of patients with obstructive sleep apnea. Laryngoscope 118(8):1486–1492CrossRefGoogle Scholar
  20. 20.
    Pae EK, Lowe AA, Fleetham JA (1997) A role of pharyngeal length in obstructive sleep apnea patients. Am J Orthod Dentofacial Orthop 111(1):12–17CrossRefGoogle Scholar
  21. 21.
    Lowe AA, Ono T, Ferguson KA, Pae EK, Ryan CF, Fleetham JA (1996) Cephalometric comparisons of craniofacial and upper airway structure by skeletal subtype and gender in patients with obstructive sleep apnea. Am J Orthod Dentofacial Orthop 110(6):653–664CrossRefGoogle Scholar
  22. 22.
    Bucchieri A, Mastrangelo C, Stella R, Poladas EG (2004) Cephalometric evaluation of hyoid bone position in patients with obstructive sleep apnea. Minerva Stomatol 53(1–2):33–39Google Scholar
  23. 23.
    Lowe AA, Ozbek MM, Miyamoto K, Pae EK, Fleetham JA (1997) Cephalometric and demographic characteristics of obstructive sleep apnea: an evaluation with partial least squares analysis. Angle Orthod 67(2):143–153Google Scholar
  24. 24.
    Ferguson KA, Ono T, Lowe AA, Ryan CF, Fleetham JA (1995) The relationship between obesity and craniofacial structure in obstructive sleep apnea. Chest 108(2):375–381CrossRefGoogle Scholar
  25. 25.
    Tangugsorn V, Krogstad O, Espeland L, Lyberg T (2000) Obstructive sleep apnoea: multiple comparisons of cephalometric variables of obese and non-obese patients. J Craniomaxillofac Surg 28(4):204–212CrossRefGoogle Scholar
  26. 26.
    Nelson S, Hans M (1997) Contribution of craniofacial risk factors in increasing apneic activity among obese and nonobese habitual snorers. Chest 111(1):154–162CrossRefGoogle Scholar
  27. 27.
    Sforza E, Bacon W, Weiss T, Thibault A, Petiau C, Krieger J (2000) Upper airway collapsibility and cephalometric variables in patients with obstructive sleep apnea. Am J Respir Crit Care Med 161(2 Pt 1):347–352CrossRefGoogle Scholar
  28. 28.
    Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, Poptani H et al (2014) Tongue fat and its relationship to obstructive sleep apnea. Sleep 37(10):1639–1648CrossRefGoogle Scholar
  29. 29.
    Bixler EO, Vgontzas AN, Ten Have T, Tyson K, Kales A (1998) Effects of age on sleep apnea in men: I. Prevalence and severity. Am J Respir Crit Care Med 157(1):144–148CrossRefGoogle Scholar
  30. 30.
    Young T, Shahar E, Nieto FJ, Redline S, Newman AB, Gottlieb DJ et al (2002) Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study. Arch Intern Med 162(8):893–900CrossRefGoogle Scholar
  31. 31.
    Young T, Skatrud J, Peppard PE (2004) Risk factors for obstructive sleep apnea in adults. JAMA 291(16):2013–2016CrossRefGoogle Scholar
  32. 32.
    Mayer P, Pepin JL, Bettega G, Veale D, Ferretti G, Deschaux C et al (1996) Relationship between body mass index, age and upper airway measurements in snorers and sleep apnoea patients. Eur Respir J 9(9):1801–1809CrossRefGoogle Scholar
  33. 33.
    Deng X, Gu W, Li Y, Liu M, Li Y, Gao X (2014) Age-group-specific associations between the severity of obstructive sleep apnea and relevant risk factors in male and female patients. PLoS ONE 9(9):e107380CrossRefGoogle Scholar
  34. 34.
    Ayas NT, Pittman S, MacDonald M, White DP (2003) Assessment of a wrist-worn device in the detection of obstructive sleep apnea. Sleep Med 4(5):435–442CrossRefGoogle Scholar
  35. 35.
    Pittman SD, Ayas NT, MacDonald MM, Malhotra A, Fogel RB, White DP (2004) Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep 27(5):923–933CrossRefGoogle Scholar
  36. 36.
    Pittman SD, Pillar G, Berry RB, Malhotra A, MacDonald MM, White DP (2006) Follow-up assessment of CPAP efficacy in patients with obstructive sleep apnea using an ambulatory device based on peripheral arterial tonometry. Sleep Breath 10(3):123–131CrossRefGoogle Scholar
  37. 37.
    White DP (2008) Monitoring peripheral arterial tone (PAT) to diagnose sleep apnea in the home. J Clin Sleep Med 4(1):73Google Scholar
  38. 38.
    Zou D, Grote L, Peker Y, Lindblad U, Hedner J (2006) Validation a portable monitoring device for sleep apnea diagnosis in a population based cohort using synchronized home polysomnography. Sleep 29(3):367–374CrossRefGoogle Scholar

Copyright information

© The Association of Oral and Maxillofacial Surgeons of India 2018

Authors and Affiliations

  • Daniel Ben Ner
    • 1
    • 2
  • Narin Nard Carmel-Neiderman
    • 1
    • 2
  • Dan M. Fliss
    • 1
    • 2
  • Noa Haas
    • 3
    • 2
  • Eyal Rosenzweig
    • 1
    • 2
    Email author
  1. 1.Department of Otolaryngology Head & Neck Surgery and Maxillofacial SurgeryTel Aviv Sourasky Medical CenterTel-AvivIsrael
  2. 2.Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.School of Mathematical ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations