Advertisement

Talent orientation: the impact of motor abilities on future success in table tennis

  • Maximilian SienerEmail author
  • Andreas Hohmann
Main Article
  • 4 Downloads

Abstract

In talent screening campaigns of primary school children, the aim is to identify talents and assign the children to a sport suitable to their characteristics. Here, the question arises whether these tests can help find talents at the elementary school age. Therefore, this study on table tennis players examined whether second-grade children tested with a battery of nine motor tests (Fulda Movement Check) were able to reach the predicted performance level in later adolescence. For this prognostic validity study, N = 225 U9 table tennis players were tested with two anthropometric and nine general motor tests between 2010 and 2014. These characteristics were then related to the success that table tennis players achieved by 2017. The comparison of table tennis players with soccer players, athletes of other sports, and nonathletes by means of a univariate analysis of variance (ANOVA) showed that table tennis players were clearly superior to other sports groups in the test tasks of sideward jumping and push-ups. Odds ratios for certain test performance thresholds were calculated to determine probabilities of later success. For a special table tennis recommendation score based on a selection of six of the nine tests, the identification and classification chances (sensitivity and specificity) were determined using a linear discriminant analysis and a neural network (multilayer perceptron). All in all, a medium to high prognostic validity could be proven with the complete motor test battery as well as with the table tennis recommendation score.

Keywords

Talent Talent screening Sport orientation Validity Motor skills Table tennis 

Talentorientierung: Einfluss der sportmotorischen Fähigkeiten auf den zukünftigen Erfolg im Tischtennis

Zusammenfassung

In Talentscreeningkampagnen für Grundschulkinder sollen Talente erkannt und Kinder Sportarten zugeführt werden, die zu deren Eigenschaften passen. Hierbei stellt sich mitunter die Frage, ob diese Testungen überhaupt ihr Ziel erfüllen und tatsächlich Talente in dieser Altersgruppe aufspüren können. In der vorliegenden Studie zu Tischtennisspielern wurde daher geprüft, ob die in einem sportmotorischen Test (Fuldaer Bewegungscheck) getesteten Grundschulkinder der zweiten Klasse im späteren Jugendalter das ihnen prognostizierte Leistungsniveau erreichen konnten. Für diese prognostische Validitätsstudie wurden in den Jahren 2010–2014 n = 225 Tischtennisspieler der U9 auf ihre sportmotorischen Fähigkeiten in zwei anthropometrischen und neun allgemeinen Motoriktests getestet. Die erhobenen Merkmalsausprägungen wurden anschließend mit den im Jahr 2017 erreichten Erfolgen in Bezug gesetzt. In einem zusätzlichen Vergleich von Tischtennisspielern mit Fußballspielern, anderen Sportlern und Nichtsportlern zeigte sich, dass Tischtennisspieler vor allem in der Testaufgabe des seitlichen Hin- und Herspringens und im Liegestütztest den anderen Sportgruppen deutlich überlegen waren. Dies konnte auch durch eine univariate Varianzanalyse (ANOVA) bestätigt werden. Für bestimmte Testleistungsschwellenwerte wurden Odds Ratios berechnet, um die Wahrscheinlichkeiten des späteren Erfolgs zu bestimmen. Für einen eigens entwickelten Tischtennisempfehlungswert, basierend auf einer Auswahl von sechs der neun Tests, wurden zudem anhand einer linearen Diskriminanzanalyse und eines neuronalen Netzes (mehrlagiges Perzeptron) die Identifikations- und Klassifikationschancen (Sensitivität und Spezifität) bestimmt. Insgesamt konnte sowohl mit den sportmotorischen Tests als auch mit dem speziell berechneten Tischtennisempfehlungswert eine mittlere bis hohe prognostische Validität nachgewiesen werden.

Schlüsselwörter

Talent Talentscreening Sportartorientierung Validität Sportmotorische Fähigkeiten Tischtennis 

Notes

Acknowledgements

The authors would also like to thank the authorities of the city of Fulda, the Fulda district authorities, and the participating elementary schools for supporting the Fulda Movement campaign since 2010.

Funding

This study is part of the research project “talent identification,” which was supported by the German Institute of Sport Science (Bonn, Germany).

Compliance with ethical guidelines

Conflict of interest

M. Siener and A. Hohmann declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

References

  1. Akpinar, S., Devrilmez, E., & Kirazci, S. (2012). Coincidence-Anticipation timing requirements are different in racket sports. Perceptual and Motor Skills: Exercise & Sport,, 115(2), 1–13.CrossRefGoogle Scholar
  2. Bös, K., & Schlenker, L. (2016). Der Deutsche Motorik-Test6–18 (2nd edn.). Hamburg: Feldhaus.Google Scholar
  3. Carling, C., & Collins, D. (2014). Comment on “football-specific fitness testing: adding value or confirming the evidence?”. Journal of Sports Science, 32(13), 1206–1208.CrossRefGoogle Scholar
  4. Carling, C., Le Gall, F., & Malina, R. M. (2012). Body size. skeletal maturity. and functional characteristics of elite academy soccer players on entry between 1992 and 2003. Journal of Sports Sciences, 30(15), 1683–1693.  https://doi.org/10.1080/02640414.2011.637950.CrossRefGoogle Scholar
  5. Chu, C. Y., Chen, I. T., Chen, L. C., Huang, C. J., & Hung, T. M. (2012). Sources of psychological states related to peak performance in elite table tennis players. International Journal of Table Tennis Sciences, 7, 86–90.Google Scholar
  6. Doherty, S. A. P., Martinent, G., Martindale, A., & Faber, I. R. (2018). Determinants for table tennis performance in elite scottish youth players using a multidimensional approach: a pilot study. High Ability Studies, 29, 241–254.  https://doi.org/10.1080/13598139.2018.1496069.CrossRefGoogle Scholar
  7. Faber, I. R., Oosterveld, F. G. J., & Nijhuis-Van der Sanden, M. W. (2014). Does an eye-hand coordination test have added value as part of talent identification in table tennis? A validity and reproducibility study. PLoS one.  https://doi.org/10.1371/journal.pone.0182211.Google Scholar
  8. Faber, I. R., Oosterveld, F. G., Van den Heuvel, S., Bustin, P., Elferink-Gemser, M., & Nijhuis-Van der Sanden, M. W. (2015). High potential in table tennis from the perspectives of elite players and their youth trainers: an explorative qualitative study. 5th World Racket Sport Congress, China.Google Scholar
  9. Faber, I. R., Bustin, P. M., Oosterveld, F. G., Elferink-Gemser, M. T., & Nijhuis-Van der Sanden, M. W. (2016). Assessing personal talent determinants in young racquet sport players: a systematic review. Journal of Sports Sciences, 34(5), 395–410.  https://doi.org/10.1080/02640414.2015.1061201.CrossRefGoogle Scholar
  10. Faber, I. R., Elferink-Gemser, M. T., Oosterveld, F. G., Twisk, J. W., & Nijhuis-Van der Sanden, M. W. (2017a). Can an early perceptuo-motor skills assessment predict future performance in youth table tennis players?: An observational study (1998–2013). Journal of sports sciences, 35(6), 593–601.Google Scholar
  11. Faber, I. R., Pion, J., Munivrana, G., Faber, N. R., & Nijhuis-Van der Sanden, M. W. (2017b). Does a perceptuomotor skills assessment have added value to detect talent for table tennis in primary school children? Journal of Sports Science, 6, 593–601.Google Scholar
  12. Figueiredo, A. J., Gonçalves, C. E., Coelho, E., Silva, M. J., & Malina, R. M. (2009). Youth soccer players. 11–14 years: maturity, size, function, skill and goal orientation. Annals of Human Biology, 36(1), 60–73.  https://doi.org/10.1080/03014460802570584.CrossRefGoogle Scholar
  13. Fuchslocher, J., Romann, M., Rüdisüli, L. R., Birrer, D., & Hollenstein, C. (2011). Das Talentselektionsinstrument PISTE: wie die Schweiz Nachwuchsathleten auswählt. Leistungssport, 41(4), 22–27.Google Scholar
  14. Le Gall, F., Carling, C., Williams, M., & Reilly, T. (2010). Anthropometric and fitness characteristics of international. professional and amateur male graduate soccer players from an elite youth academy. Journal of Science and Medicine in Sport, 13(1), 90–95.CrossRefGoogle Scholar
  15. Golle, K., Muehlbauer, T., Wick, D., & Granacher, U. (2015). Physical fitness percentiles of German children aged 9–12 years: findings from a longitudinal study. PLoS ONE, 10(11), e142393.  https://doi.org/10.1371/journal.pone.0142393.CrossRefGoogle Scholar
  16. Gonaus, C., & Müller, E. (2012). Using physiological data to predict future career progression in 14- to 17-year-old Austrian soccer academy players. Journal of Sports Sciences, 30(15), 1673–1682.  https://doi.org/10.1080/02640414.2012.713980.CrossRefGoogle Scholar
  17. Hohmann, A., & Seidel, I. (2003). Scientific aspects of talent development. International Journal of Physical Education, 40(1), 9–20.Google Scholar
  18. Hohmann, A., Fehr, U., Siener, M., & Hochstein, S. (2017a). Talentscreening und Talentorientierung. Leistungssport, 47(4), 11–13.Google Scholar
  19. Hohmann, A., Fehr, U., Siener, M., & Hochstein, S. (2017b). Validity of early talent screening and talent orientation. In P. Platen, A. Ferrauti, E. Grimminger-Seidensticker & T. Jaitner (Eds.), Sport science in a metropolitan area (p. 590). Bochum: University Press.Google Scholar
  20. Hohmann, A., Fehr, U., & Voigt, L. (2015). Heute im Talentpool – In Hamburg auf dem Podium. Leistungssport, 45(5), 5–11.Google Scholar
  21. Hohmann, A., Siener, M., & He, R. (2018). Prognostic validity of talent orientation in soccer. German Journal of Exercise and Sport Research, 48, 478–488.  https://doi.org/10.1007/s12662-018-0549-5.CrossRefGoogle Scholar
  22. Höner, O., & Votteler, A. (2016). Prognostic relevance of motor talent predictors in early adolescence: a group- and individual-based evaluation considering different levels of achievement in youth football. Journal of Sports Sciences, 34(24), 2269–2278.CrossRefGoogle Scholar
  23. Höner, O., Leyhr, D., & Kelava, A. (2017). The influence of speed abilities and technical skills in early adolescence on adult success in soccer: A long-term prospective analysis using ANOVA and SEM approaches. PLoS one.  https://doi.org/10.1371/journal.pone.0182211.Google Scholar
  24. International Table Tennis Federation (2018, November 20th). Current WR – men. http://results.ittf.link/index.php?option=com_fabrik&view=list&listid=69&Itemid=206. Accessed: 20 Nov 2018Google Scholar
  25. Kondric, M., Furjan-Mandić, G., Kondrič, L., & Gabaglio, A. (2010). Physiological demands and testing in table tennis. International Journal of Table Tennis Science, 6, 165–171.Google Scholar
  26. Kondric, M., Zagatto, A. M., & Sekulic, D. (2013). The physiological demands of table tennis: a review. Journal of Sports Science & Medicine, 12(3), 362–370.Google Scholar
  27. Lopez, A., & Santelices, O. (2012). Personality characteristics of elite table tennis athletes of the Philippines: basis for a proposed recruitment program. International Journal of Table Tennis Sciences, 7, 1–4.Google Scholar
  28. Mähner, T. (2018). Talentdiagnose im Tischtennis. Zur Validität sportmotorischer Tests in der Talentsichtung & Talentselektion. Unpublished manuscript, Lehrstuhl für Trainings- und Bewegungswissenschaft, Universität Bayreuth, Bayreuth.Google Scholar
  29. Meylan, C., Cronin, J., Oliver, J., & Hughes, M. (2010). Reviews: talent identification in soccer: the role of maturity status on physical. physiological and technical characteristics. International Journal of Sports Science & Coaching, 5(4), 571–592.CrossRefGoogle Scholar
  30. Müller, L., Müller, E., Kornexl, E., & Raschner, C. (2015). The relationship between physical motor skills, gender and relative age effects in young Austrian alpine ski racers. International Journal of Sports Science & Coaching, 10(1), 69–85.  https://doi.org/10.1260/1747-9541.10.1.69.CrossRefGoogle Scholar
  31. Munivrana, G., Furjan-Mandic, G., & Kondrič, M. (2015a). Determining the structure and evaluating the role of technical-tactical elements in basic table tennis playing systems. International Journal of Sports Science & Coaching, 10, 111–132.CrossRefGoogle Scholar
  32. Munivrana, G., Petrinović, L., & Kondrič, M. (2015b). Structural analysis of technical-tactical elements in table tennis and their role in different playing zones. Journal of Human Kinetics, 47(1), 197–214.  https://doi.org/10.1515/hukin-2015-0076.CrossRefGoogle Scholar
  33. Nikolic, I., Furjan-Mandic, G., & Kondric, M. (2014). The relationship of morphology and motor abilities to specific table tennis tasks in youngsters. Collegium Antropologicum, 38(1), 241–245.Google Scholar
  34. Papic, V., Rogulj, N., & Plestina, V. (2009). Identification of sport talents using a web-oriented expert system with a fuzzy module. Expert Systems with Applications, 36, 8830–8838.  https://doi.org/10.1016/j.eswa.2008.11.031.CrossRefGoogle Scholar
  35. Pion, J. (2015). The Flemish Sports Compass: from sports orientation to elite performance prediction. Ghent: University Press.Google Scholar
  36. Pion, J. (2017). Sustainable investment in sports talent: the path to the podium through the school and the sports club. Arnhem: HAN University of Applied Sciences Press.Google Scholar
  37. Pion, J., Hohmann, A., Liu, T., Vandorpe, B., Lenoir, M., & Segers, V. (2016). Predictive models reduce talent development costs in female gymnastics. Journal of Sports Sciences, 35(8), 806–811.CrossRefGoogle Scholar
  38. Pion, J., Segers, V., Fransen, J., Debuyck, G., Deprez, D., Haerens, L., & Lenoir, M. (2015). Generic anthropometric and performance characteristics among elite adolescent boys in nine different sports. European Journal of Sport Science, 15(5), 357–366.  https://doi.org/10.1080/17461391.CrossRefGoogle Scholar
  39. Robertson, K., Pion, J., Mostaert, M., Norjali Wazir, M. R. W., Kramer, T., Faber, I. R., Vansteenkiste, P., & Lenoir, M. (2018). A coaches’ perspective on the contribution of anthropometry, physical performance, and motor coordination in racquet sports. Journal of Sports Sciences, 36, 2706–2715.  https://doi.org/10.1080/02640414.2018.1441941.CrossRefGoogle Scholar
  40. Rodrigues, S. T., Vickers, J. N., & Williams, A. M. (2002). Head, eye and arm coordination in table tennis. Journal of Sports Sciences, 20, 187–200.CrossRefGoogle Scholar
  41. Roescher, C., Elferink-Gemser, M., Huijgen, B., & Visscher, C. (2010). Soccer endurance development in professionals. International Journal of Sports Medicine, 31, 174–179.  https://doi.org/10.1055/s-0029-1243254.CrossRefGoogle Scholar
  42. Stemper, T., Bachmann, C., Diehlmann, K., & Kemper, B. (2009). Das Düsseldorfer Modell der Bewegungs‑, Sport- und Talentförderung (DüMo). In Bundesinstitut für Sportwissenschaft (Ed.), Talentdiagnose und Talentprognose. 2. BISp-Symposium: Theorie trifft Praxis. (pp. 139–142). Köln: Strauss.Google Scholar
  43. Willimczik, K. (1982). Determinanten der sportmotorischen Leistungsfähigkeit im Kindesalter. In H. Howald & E. Hahn (Eds.), Kinder im Leistungssport (pp. 141–153). Stuttgart: Birkhäuser.CrossRefGoogle Scholar
  44. Zuber, C., Zibung, M., & Conzelmann, A. (2016). Holistic patterns as an instrument for predicting the performance of promising young soccer players—A 3‑years longitudinal study. Frontiers in Psychology,, 7, 1088.  https://doi.org/10.3389/fpsyg.2016.01088.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Sports ScienceUniversity of BayreuthBayreuthGermany

Personalised recommendations