Advertisement

German Journal of Exercise and Sport Research

, Volume 49, Issue 4, pp 493–502 | Cite as

Effekte eines achtwöchigen progressiven Rope-Trainings auf die Leistungsfähigkeit der oberen Extremitäten

  • Nico NitzscheEmail author
  • Sebastian Jürgens
  • Henry Schulz
Hauptbeitrag
  • 76 Downloads

Zusammenfassung

Das Ziel war, ein achtwöchiges, progressives Rope-Training (RT) auf die Leistungsfähigkeit der oberen Extremität zu untersuchen. Dabei wurden 34 gesunde, trainierte Probanden einer Interventionsgruppe (IG; n = 17; Alter: 25,2 ± 2,3 Jahre; BMI: 23,8 ± 2,3 kg ∙ m–2) und einer Kontrollgruppe (KG; n = 17; Alter: 23,4 ± 2,8 Jahre; BMI: 22,9 ± 3,0 kg ∙ m–2) randomisiert zugeordnet. Die IG absolvierte ein achtwöchiges, progressives RT mit drei TE (Trainingseinheiten) pro Woche, wohingegen die KG das individuelle Training fortsetzte. Die Prä- und Posttests bestanden aus einem isokinetischen Krafttest der Armbeuger und -strecker sowie einem maximalen Stufentest mittels Oberarmergometer (OBE). Während der OBE wurden die Herzfrequenz (HF); die Atemgaswerte- sowie die Blutlaktatkonzentration erfasst. Zur Auswertung der OBE wurden die maximale Leistung (Pmax), Leistung bei 2 mmol ∙ l-1 (P2) sowie 4 mmol ∙ l-1 (P4), \(\dot{V}\)O2peak sowie die maximale Laktatkonzentration (LamaxBel) und im isokinetischen Krafttest die mittlere maximale Leistung (isoPmax) und der Fatigue Index (FI) herangezogen. Während des RT wurden die HF sowie nach jeder TE die RPE (BORG-Skala: 6–20) erhoben. Nach dem RT zeigte die IG signifikante Steigerungen bei P2, P4, Pmax, rel. \(\dot{V}\)O2peak, isoPmax der Extensoren (pkorr <0,05) sowie des LamaxBel (pkorr < 0,01). Die KG zeigte eine signifikante Erhöhung bei P4 (pkorr < 0,01). Signifikante Gruppenunterschiede der Prä-Post-Differenzen wurden bei allen Parametern außer beim FI festgestellt (pkorr < 0,05). Die IG trainierte bei 98 ± 8 %HFpeak. Die subjektive Beanspruchung der IG lag über den Interventionszeitraum bei RPE 18 ± 1. Die Ergebnisse zeigten, dass ein achtwöchiges, progressives RT bei gesunden, trainierten Probanden zu einer signifikanten Steigerung der Leistungsfähigkeit der oberen Extremitäten führt.

Schlüsselwörter

Funktionelles Training Krafttraining Oberarmergometrie Laktat Isokinetik 

Effects of eight-week progressive rope training on the capacity of upper extremities

Abstract

The aim of the study was to investigate an 8‑week progressive rope training (RT) on the capacity of the upper limbs. In all, 34 healthy, trained subjects were assigned to an intervention group (IG; n = 17, age: 25.2 ± 2.3 years, BMI: 23.8 ± 2.3 kg ∙ m–2) or a control group (CG; n = 17, age: 23.4 ± 2.8 years, BMI: 22.9 ± 3.0 kg ∙ m–2). The IG completed an 8‑week, progressive RT with three exercise session (ES) per week, whereas the CG continued individual training. The pre- and posttests consisted of an isokinetic strength endurance test of the arm flexors and extensors as well as of a maximum step test by means of upper arm ergometry (UAE). During UAE, heart rate (HR) was measured; the respiratory and the blood lactate concentrations were determined. For the evaluation of the UAE, the maximum power (Pmax), power at 2 mmol ∙ l–1 (P2) and at 4 mmol ∙ l–1 (P4), \(\dot{V}\)O2peak and the maximum lactate concentration (Lamaxload) and in the isokinetic force test the mean maximum power (isoPmax) and the Fatigue Index (FI) were used. During training, the HF and after every ES the Rating of Perceived Exertion (RPE, BORG scale: 6–20) were recorded. After RT, the IG showed significant increases at P2, P4, Pmax, isoPmax, relative \(\dot{V}\)O2peak (pkorr < 0.05) and Lamaxload (pkorr < 0.01). The CG showed only a significant increase only in P4 (pkorr < 0.01). Significant group differences were found in all parameters except the FI (pkorr < 0.05). The IG trained at 98 ± 8% HRpeak. The subjective stress was very high over the intervention period (RPE 18 ± 1). The results show that an 8‑week progressive RT in healthy, trained subjects leads to a significant increase in capacity of the upper extremities.

Keywords

Functional training Strength training Upper arm ergometry Lactate Isokinetic 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

N. Nitzsche, S. Jürgens, H. Schulz und geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen oder an menschlichem Gewebe wurden mit Zustimmung der zuständigen Ethikkommission (TU Chemnitz), im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Literatur

  1. Antony, B., & Palanisamy, A. (2016). Impact of battle rope high intensity training on selected biochemical and physiological variables among athletes. International Journal of Advanced Scientific Research, 1(5), 27–30.Google Scholar
  2. Antony, B., & Palanisamy, A. (2017). Influence of high and low altitude battle rope training protocol on selected physiological variables among national level athletes. International Education & Research Journal, 3(5), 709–711.Google Scholar
  3. Antony, B., Palanisamy, A., & Maheswri, U. M. (2015). Impact of battle rope and Bulgarian bag high intensity interval training protocol on selected strength and physiological variables among school level athletes. Indian Journal of Applied Research, 5(5), 1–4.Google Scholar
  4. Astorino, T. A., deRevere, J., Anderson, T., Kellogg, E., Holstrom, P., Ring, S., & Ghaseb, N. (2018). Change in VO2max and time trial performance in response to high-intensity interval training prescribed using ventilatory threshold. European Journal of Applied Physiology, 118, 1811–1820.  https://doi.org/10.1007/s00421-018-3910-3.CrossRefPubMedGoogle Scholar
  5. Bassan, N. M., Simões, L. B., Cesar, T. E. A. S., Caritá, R. A. C., de Lima, L. C. R., Denadai, B. S., & Greco, C. C. (2015). Reliability of isometric and isokinetic peak torque of elbow flexors and elbow extensors muscles in trained swimmers. Revista Brasileira De Cineantropometria E Desempenho Humano, 17(5), 507–516.CrossRefGoogle Scholar
  6. Bulthuis, Y., Drossaers-Bakker, W., Oosterveld, F., van der Palen, J., & van de Laar, M. (2010). Arm crank ergometer is reliable and valid for measuring aerobic capacity during submaximal exercise. Journal of Strength and Conditioning Research/National Strength & Conditioning Association, 24(10), 2809–2815.  https://doi.org/10.1519/JSC.0b013e3181e31242.CrossRefGoogle Scholar
  7. Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151–160.  https://doi.org/10.1113/jphysiol.2007.142109.CrossRefPubMedGoogle Scholar
  8. Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J. F., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98(6), 1985–1990.  https://doi.org/10.1152/japplphysiol.01095.2004.CrossRefPubMedGoogle Scholar
  9. Calatayud, J., Martin, F., Colado, J. C., Benítez, J. C., Jakobsen, M. D., & Andersen, L. L. (2015). Muscle activity during unilateral versus bilateral battle rope training. Journal of Strength and Conditioning Research/National Strength & Conditioning Association.  https://doi.org/10.1519/JSC.0000000000000963.CrossRefGoogle Scholar
  10. Chen, W.-H., Wu, H.-J., Lo, S.-L., Chen, H., Yang, W.-W., Huang, C.-F., & Liu, C. (2018a). Eight-week battle rope training improves multiple physical fitness dimensions and shooting accuracy in collegiate basketball players. Journal of Strength and Conditioning Research/National Strength & Conditioning Association.  https://doi.org/10.1519/JSC.0000000000002601.CrossRefGoogle Scholar
  11. Chen, W.-H., Yang, W.-W., Lee, Y.-H., Wu, H.-J., Huang, C.-F., & Liu, C. (2018b). Acute effects of battle rope exercise on performance, blood lactate levels, perceived exertion, and muscle soreness in collegiate basketball players. Journal of Strength and Conditioning Research/National Strength & Conditioning Association, 1–10.  https://doi.org/10.1519/JSC.0000000000002661.CrossRefGoogle Scholar
  12. Faigenbaum, A. D., Kang, J., Ratamess, N. A., Farrell, A., Golda, S., Stranieri, A., et al. (2018). Acute Cardiometabolic responses to a novel training rope protocol in children. Journal of Strength and Conditioning Research/National Strength & Conditioning Association, 32(5), 1197–1206.  https://doi.org/10.1519/JSC.0000000000002466.CrossRefGoogle Scholar
  13. Felder, D., Hogan, K., Kovacs, R., Mitchell, H., & Brewer, W. (2018). Metabolic responses to a battling rope protocol performed in the seated or stance positions. https://digitalcommons.wku.edu/ijesab/vol2/iss10/3 CrossRefGoogle Scholar
  14. Flueck, J. L., Lienert, M., Schaufelberger, F., & Perret, C. (2015). Reliability of a 3-min all-out arm crank ergometer exercise test. International Journal of Sports Medicine, 36(10), 809–813.  https://doi.org/10.1055/s-0035-1548811.CrossRefPubMedGoogle Scholar
  15. Fountaine, C. J., & Schmidt, B. J. (2015). Metabolic cost of rope training. Journal of Strength and Conditioning Research/National Strength & Conditioning Association, 29(4), 889–893.  https://doi.org/10.1519/JSC.0b013e3182a35da8.CrossRefGoogle Scholar
  16. Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology. General, 141(1), 2–18.  https://doi.org/10.1037/a0024338.CrossRefPubMedGoogle Scholar
  17. Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I.-M., et al. (2011). American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334–1359.  https://doi.org/10.1249/MSS.0b013e318213fefb.CrossRefPubMedGoogle Scholar
  18. Ghorbanian, B., Ravassi, A., Kordi, M. R., & Hedayati, M. (2013). The effects of rope training on lymphocyte ABCA1 expression, plasma ApoA-I and HDL-c in Boy adolescents. International Journal of Endocrinology and Metabolism, 11(2), 76–81.  https://doi.org/10.5812/ijem.8178.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Griffin, J. W. (1987). Differences in elbow flexion torque measured concentrically, eccentrically, and isometrically. Physical Therapy, 67(8), 1205–1208.CrossRefGoogle Scholar
  20. Grissom, R. J., & Kim, J. J. (2012). Effect sizes for research: Univariate and multivariate applications (2. Aufl.). New York: Routledge.CrossRefGoogle Scholar
  21. Holm, S. (1979). A simple sequentially Rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.Google Scholar
  22. Iskandar, M. M., Mohamad, N. I., Othman, S., & Nadzalan, A. M. (2017). Metabolic cost during tyre and rope functional training. Journal of Fundamental and Applied Sciences, 9(6S), 1050–1062.  https://doi.org/10.4314/jfas.v9i6s.77.CrossRefGoogle Scholar
  23. Ivarsson, A., Andersen, M. B., Urban, J., & Lindwall, M. (2013). To adjust or not adjust: nonparametric effect sizes, confidence intervals, and real-world meaning. Psychology of Sport and Exercise, 14, 97–102.CrossRefGoogle Scholar
  24. Jacobs, R. A., Flück, D., Bonne, T. C., Bürgi, S., Christensen, P. M., Toigo, M., & Lundby, C. (2013). Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Journal of Applied Physiology, 115(6), 785–793.  https://doi.org/10.1152/japplphysiol.00445.2013.CrossRefPubMedGoogle Scholar
  25. Jensky-Squires, N. E., Dieli-Conwright, C. M., Rossuello, A., Erceg, D. N., McCauley, S., & Schroeder, E. T. (2008). Validity and reliability of body composition analysers in children and adults. The British Journal of Nutrition, 100(4), 859–865.  https://doi.org/10.1017/S0007114508925460.CrossRefPubMedGoogle Scholar
  26. Larsen, S., Danielsen, J. H., Søndergård, S. D., Søgaard, D., Vigelsoe, A., Dybboe, R., et al. (2015). The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scandinavian Journal of Medicine & Science in Sports, 25(1), e59–69.  https://doi.org/10.1111/sms.12252.CrossRefGoogle Scholar
  27. Löllgen, H. (2004). Das Anstrengungsempfinden: (RPE, Borg-Skala). Deutsche Zeitschrift Für Sportmedizin, 55, 299–300.Google Scholar
  28. Löllgen, H., Graham, T., & Sjogaard, G. (1980). Muscle metabolites, force, and perceived exertion bicycling at varying pedal rates. Medicine and Science in Sports and Exercise, 12(5), 345–351.CrossRefGoogle Scholar
  29. Lund, H., Sondergaard, K., Zachariassen, T., Christensen, R., Bulow, P., Henriksen, M., & Bartels, E. M. (2005). Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of Biodex and Lido dynamometers. Clin Physiol Funct Imaging, 25(2), 75–82.CrossRefGoogle Scholar
  30. McAuslan, C. (2013). Physiological responses to a battling rope high intensity interval training protocol. http://scholar.uwindsor.ca/etd Google Scholar
  31. Prakash Raaj, K.M. & Kaba Rosario, C. (2016). Impact of battle rope high intensity training on selected biochemical and physiological variables among athletes. International Journal of Multidisciplinary Research Review, 1(18), 158–161.Google Scholar
  32. Ozer, D., Duzgun, I., Baltagi, G., Karacan, S., Colakoglu, F. (2011). The effect of rope or weighted rope jump training on strength, coordination and proprioception in adolescent female volleyball players. Journal of Sports Medicine and Physical Fitness, 51(2), 211–219.PubMedGoogle Scholar
  33. Parra, J., Cadefau, J. A., Rodas, G., Amigó, N., & Cussó, R. (2000). The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiologica Scandinavica, 169(2), 157–165.  https://doi.org/10.1046/j.1365-201x.2000.00730.x.CrossRefPubMedGoogle Scholar
  34. Prakash Raaj, K. M., & Kaba Rosario, C. (2017). Impact of battle rope training on selected physical fitness components and performance variables among volleyball players. PARIPEX - Indian Journal of Research, 6(4), 579–580.Google Scholar
  35. Quednow, J., Sedlak, T., Meier, J., Janot, J., & Braun, S. (2015). The effects of high intensity interval-based Kettlebells and battle rope training on grip strength and body composition in college-aged adults. International Journal of Exercise Science, 8(2), 124–133.Google Scholar
  36. Rasch, B., Friese, M., Hofmann, W., & Naumann, E. (2010). Quantitative Methoden (3. Aufl.). Bd. 2. Heidelberg: Springer.CrossRefGoogle Scholar
  37. Ratamess, N. A., Rosenberg, J. G., Klei, S., Dougherty, B. M., Kang, J., Smith, C. R., et al. (2015a). Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises. ournal of Strength and Conditioning Research/National Strength & Conditioning Association, 29(1), 47–57.  https://doi.org/10.1519/JSC.0000000000000584.CrossRefGoogle Scholar
  38. Ratamess, N. A., Smith, C., Beller, N. A., Kang, J., Faigenbaum, A. D., & Bush, J. A. (2015b). The effects of rest interval length on acute battling rope exercise metabolism. Journal of Strength and Conditioning Research/National Strength & Conditioning Association.  https://doi.org/10.1519/JSC.0000000000001053.CrossRefGoogle Scholar
  39. Rodas, G., Ventura, J. L., Cadefau, J. A., Cussó, R., & Parra, J. (2000). A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. European Journal of Applied Physiology, 82(5–6), 480–486.  https://doi.org/10.1007/s004210000223.CrossRefPubMedGoogle Scholar
  40. Scribbans, T. D., Vecsey, S., Hankinson, P. B., Foster, W. S., & Gurd, B. J. (2016). The effect of training intensity on VO2max in young healthy adults: a Meta-regression and Meta-analysis. International Journal of Exercise Science, 9(2), 230–247.PubMedPubMedCentralGoogle Scholar
  41. Talanian, J. L., Galloway, S. D. R., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439–1447.  https://doi.org/10.1152/japplphysiol.01098.2006.CrossRefPubMedGoogle Scholar
  42. Vincent, G., Lamon, S., Gant, N., Vincent, P. J., MacDonald, J. R., Markworth, J. F., et al. (2015). Changes in mitochondrial function and mitochondria associated protein expression in response to 2‑weeks of high intensity interval training. Frontiers in Physiology, 6(51), 1–8.  https://doi.org/10.3389/fphys.2015.00051.CrossRefGoogle Scholar
  43. Wright, P., & Jürgens, S. (2017). Effects of a 4-week rope-training on mobility, strength and coordination compared to a machine based strength training. In A. Ferrauti (Hrsg.), Book of abstracts: 22nd annual congress of the European college of sport science, 5th–8th july 2017, metropolisRuhr—Germany (S. 270). Bochum: West German University Press.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Nico Nitzsche
    • 1
    Email author
  • Sebastian Jürgens
    • 2
  • Henry Schulz
    • 2
  1. 1.Zentrum für Sport und GesundheitsförderungTechnische Universität ChemnitzChemnitzDeutschland
  2. 2.Professur für Sportmedizin/-biologie, Institut für Angewandte BewegungswissenschaftenTechnische Universität ChemnitzChemnitzDeutschland

Personalised recommendations