Advertisement

Is there an association between variables of static and dynamic postural control in adolescent athletes with back pain?

  • Edem Korkor Appiah-DwomohEmail author
  • Steffen Müller
  • Frank Mayer
Main Article
  • 66 Downloads

Abstract

An association between static and dynamic postural control exists in adults with back pain. We aimed to determine whether this association also exists in adolescent athletes with the same condition. In all, 128 athletes with and without back pain performed three measurements of 15 s of static (one-legged stance) and dynamic (star excursion balance test) postural control tests. All subjects and a matched subgroup of athletes with and without back pain were analyzed. The smallest center of pressure mediolateral and anterior–posterior displacements (mm) and normalized highest reach distance were the outcome measures. No association was found between variables of the static and dynamic tests for all subjects and the matched group with and without back pain. The control of static and dynamic posture in adolescent athletes with and without back pain might not be related.

Keywords

Postural control Adolescent athletes Back pain One-legged stance Star excursion balance test 

Gibt es einen Zusammenhang zwischen Variablen der statischen und dynamischen posturalen Kontrolle bei Nachwuchsathleten mit Rückenschmerzen?

Zusammenfassung

Bei Erwachsenen mit Rückenschmerzen besteht ein Zusammenhang zwischen statischer und dynamischer posturaler Kontrolle. Ziel der Studie war es zu untersuchen, ob dieser Zusammenhang auch bei Nachwuchsathleten mit Rückenschmerzen nachweisbar ist. Insgesamt 128 Nachwuchsathleten mit oder ohne Rückenschmerzen führten je 3 Messungen à 15 s eines statischen (einbeiniger Standtest) bzw. dynamischen („star excursion balance test“ [SEBT]) posturalen Kontrolltests durch. In die Auswertung wurden sowohl die gesamte Stichprobe als auch eine gematchte Untergruppe einbezogen. Zielparameter waren der kleinste mediolaterale und anterior-posteriore Schwankungsweg im Einbeinstand (mm) und die normierte maximal erreichte Distanz im SEBT. Es wurden keine Zusammenhänge zwischen Variablen der statischen und dynamischen Tests für alle Studienteilnehmer und der gematchten Untergruppe mit und ohne Rückenschmerzen festgestellt. Obwohl ein Zusammenhang zwischen statischer und dynamischer posturaler Kontrolle angenommen wird, konnte dieser bei Nachwuchsathleten mit oder ohne Rückenschmerzen nicht nachgewiesen werden.

Schlüsselwörter

Posturale Kontrolle Nachwuchsathleten Rückenschmerzen Einbeiniger Standtest „Star excursion balance test“ 

Notes

Acknowledgements

The authors thank the athletes, their parents, and staff of the outpatient clinic at the University of Potsdam for the great help during data collection.

Compliance with ethical guidelines

Conflict of interest

E.K. Appiah-Dwomoh, S. Müller and F. Mayer declare that they have no competing interests.

The institution’s ethics committee gave ethical approval and the study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Participants and their parents or guardians gave written informed consent before data collection.

References

  1. Allison, G. T., Morris, S. L., & Lay, B. (2008). Feedforward responses of transversus abdominis are directionally specific and act asymmetrically: Implications for core stability theories. Journal of Orthopaedic & Sports Physical Therapy, 38(5), 228–237.  https://doi.org/10.2519/jospt.2008.2703.Google Scholar
  2. Amiridis, I. G., Hatzitaki, V., & Arabatzi, F. (2003). Age-induced modifications of static postural control in humans. Neuroscience Letters, 350(3), 137–140.  https://doi.org/10.1016/s0304-3940(03)00878-4.Google Scholar
  3. Appiah-Dwomoh, E. K., Müller, S., Hadzic, M., & Mayer, F. (2016). Star Excursion Balance Test in young athletes with back pain. Sports, 4(3), 44.Google Scholar
  4. Appiah-Dwomoh, E. K., Müller, S., & Mayer, F. (2018). Reproducibility of static and dynamic postural control measurement in adolescent athletes with back pain. Rehabilitation Research and Practice.  https://doi.org/10.1155/2018/8438350.Google Scholar
  5. Baratto, L., Morasso, P. G., Re, C., & Spada, G. (2002). A new look at posturographic analysis in the clinical context: Sway-density versus other parameterization techniques. Motor control, 6(3), 246–270.Google Scholar
  6. Bastien, M., Moffet, H., Bouyer, L., Perron, M., Hébert, L. J., & Leblond, J. (2014). Concurrent and discriminant validity of the Star Excursion Balance Test for military personnel with lateral ankle sprain. Journal of Sport Rehabilitation, 23(1), 44–55.Google Scholar
  7. Bressel, E., Yonker, J. C., Kras, J., & Heath, E. M. (2007). Comparison of static and dynamic balance in female collegiate soccer, basketball, and gymnastics athletes. Journal of athletic training, 42(1), 42–46.Google Scholar
  8. Cohen, J. (1988). Statistical power for the Behavioural sciences. Hillsdale: Erlbaum.Google Scholar
  9. Della Volpe, R., Popa, T., Ginanneschi, F., Spidalieri, R., Mazzocchio, R., & Rossi, A. (2006). Changes in coordination of postural control during dynamic stance in chronic low back pain patients. Gait Posture, 24(3), 349–355.Google Scholar
  10. Ellert, U., Neuhauser, H., & Roth-Isigkeit, A. (2007). Pain in children and adolescents in Germany: The prevalence and usage of medical services. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 50(5–6), 711–717.Google Scholar
  11. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Test for correlation and regression analyses. Behav. Res. Methods., 41(4), 1149–1160.  https://doi.org/10.3758/brm.41.4.1149.Google Scholar
  12. Ganesh, G. S., Chhabra, D., & Mrityunjay, K. (2015). Efficacy of the star excursion balance test in detecting reach deficits in subjects with chronic low back pain. Physiotherapy Research International, 20(1), 9–15.  https://doi.org/10.1002/pri.1589.Google Scholar
  13. Gribble, P. A., & Hertel, J. (2003). Considerations for normalizing measures of the Star Excursion Balance Test. Measurement in physical education and exercise science, 7(2), 89–100.Google Scholar
  14. Gribble, P. A., Hertel, J., & Plisky, P. (2012). Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. Journal of athletic training, 47(3), 339–357.Google Scholar
  15. Harringe, M. L., Halvorsen, K., Renström, P., & Werner, S. (2008). Postural control measured as the center of pressure excursion in young female gymnasts with low back pain or lower extremity injury. Gait Posture, 28(1), 38–45.Google Scholar
  16. Hertel, J., Miller, S. J., & Denegar, C. R. (2000). Intratester and intertester reliability during the star excursion balance tests. Journal of Sport Rehabilitation, 9(2), 104–116.Google Scholar
  17. Hodges, P. W., & Richardson, C. A. (1998). Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. Journal of Spinal Disorders, 11(1), 46–56.  https://doi.org/10.1097/00002517-199802000-00008.Google Scholar
  18. Horak, F. B., & Macpherson, J. M. (1996). Postural orientation and equilibrium. In L. B. Rowell & J. T. Sheperd (Eds.), Exercise: Regulation and integration of multiple systems. Handbook of physiology, (Vol. 12, pp. 255–292). New York: Oxford University Press.Google Scholar
  19. Kanekar, N., & Aruin, A. S. (2014). Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age, 36(3), 9621–9628.  https://doi.org/10.1007/s11357-014-9621-8.Google Scholar
  20. Mouchnino, L., Aurenty, R., Massion, J., & Pedotti, A. (1992). Coordination between equilibrium and head-trunk orientation during leg movement: A new strategy build up by training. Journal of Neurophysiology, 67(6), 1587–1598.Google Scholar
  21. Mueller, S., Mueller, J., Stoll, J., Cassel, M., Hirschmüller, A., & Mayer, F. (2017). Back pain in adolescent athletes: Results of a Biomechanical screening. Sports Medicine International Open, 01(01), E16–E22.Google Scholar
  22. Nashner, L. M., Black, F. O., & Wall, C. (1982). Adaptation to altered support and visual conditions during stance: Patients with vestibular deficits. The Journal of Neuroscience, 2(5), 536–544.  https://doi.org/10.1523/jneurosci.02-05-00536.1982.Google Scholar
  23. Oyarzo, C. A., Villagrán, C. R., Silvestre, R. E., Carpintero, P., & Berral, F. J. (2014). Postural control and low back pain in elite athletes comparison of static balance in elite athletes with and without low back pain. Journal of Back and Musculoskeletal Rehabilitation, 27(2), 141–146.  https://doi.org/10.3233/bmr-130427.Google Scholar
  24. Plisky, P. J., Rauh, M. J., Kaminski, T. W., & Underwood, F. B. (2006). Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. Journal of Orthopaedic & Sports Physical Therapy, 36(12), 911–919.Google Scholar
  25. Robinson, R., & Gribble, P. (2008). Kinematic predictors of performance on the Star Excursion Balance Test. Journal of Sport Rehabilitation, 17(4), 347–357.Google Scholar
  26. Ruhe, A., Fejer, R., & Walker, B. (2011). Centre of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: A systematic review of the literature. European Spine Journal, 20(3), 358–368.Google Scholar
  27. Sabin, M. J., Ebersole, K. T., Martindale, A. R., Price, J. W., & Broglio, S. P. (2010). Balance performance in male and female collegiate basketball athletes: Influence of testing surface. J. Strength. Cond. Res., 24(8), 2073–2078.  https://doi.org/10.1519/jsc.0b013e3181ddae13.Google Scholar
  28. Sohn, M. K., Lee, S. S., & Song, H. T. (2013). Effects of acute low back pain on postural control. Annals of rehabilitation medicine, 37(1), 17–25.Google Scholar
  29. Terry, M. A., Winell, J. J., Green, D. W., Schneider, R., Peterson, M., Marx, R. G., & Widmann, R. F. (2005). Measurement variance in limb length discrepancy: Clinical and radiographic assessment of interobserver and intraobserver variability. Journal of Pediatric Orthopaedics, 25(2), 197–201.Google Scholar
  30. Thorpe, J. L., & Ebersole, K. T. (2008). Unilateral balance performance in female collegiate soccer athletes. Journal of Strength and Conditioning Research, 22, 1429–1433.Google Scholar
  31. Tsigkanos, C., Gaskell, L., Smirniotou, A., & Tsigkanos, G. (2016). Static and dynamic balance deficiencies in chronic low back pain. Journal of Back and Musculoskeletal Rehabilitation, 29(4), 887–893.  https://doi.org/10.3233/bmr-160721.Google Scholar
  32. Winter, D. A., Patla, A. E., & Frank, J. S. (1990). Assessment of balance control in humans. Medical Progress through Technology, 16(1–2), 31–51.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Sports and Health Sciences, Clinical Exercise Science, University Outpatient ClinicUniversity of PotsdamPotsdamGermany
  2. 2.Department of Computer Science/Therapy ScienceTrier University of Applied ScienceTrierGermany
  3. 3.University Outpatient Clinic PotsdamUniversity of PotsdamPotsdamGermany

Personalised recommendations