Advertisement

Vision-based vehicle behavior monitoring method using a novel clustering algorithm

  • Xuan WangEmail author
  • Zhe Dai
Original Research
  • 12 Downloads

Abstract

Vehicle behavior analysis is an important task in the area of intelligent transportation systems. The purpose of this study is to monitor vehicle real-time risk and behavior using soft computing techniques. It is inspired by the fact that feature points of the same vehicle have the same motion status in the 3D space. This paper proposed an effective vehicle motion segmentation method using rigid motion constraints. Specifically, we first recovered the 3D information of the feature points using the height enumeration and camera affine matrix. Then, the rigid motion constraints of two feature point trajectories in two directions were computed to analyze the characteristic. Thereafter, an affinity matrix was built by using Gaussian kernel, where the larger value in the affinity matrix means that the feature point trajectories are more likely belonging to the same vehicle. Finally, a segment and merge procedure is adopted to cluster the feature point trajectories. Experimental results on the traffic videos and the Hopkins 155 datasets demonstrate that the proposed method achieves a good performance. This paper also gives a new idea to the field of intelligent transportation system and application.

Keywords

Motion segmentation Affinity-based method Camera calibration Rigid motion constraint Spectral clustering 

Notes

References

  1. Alcantarilla PF, Bartoli A, Davison AJ (2012) Kaze features. In: Proceedings of European conference on computer vision. https://www.semanticscholar.org/paper/KAZE-Features-Alcantarilla-Bartoli/dd89b0332ae4f980d8200ec2c1230c50cd66259f
  2. Bay H, Tuytelaars T, Gool LV (2006) Surf: speeded up robust features. In: Proceedings of European conference on computer vision. https://www.semanticscholar.org/paper/Speeded-Up-Robust-Features-(SURF)-Bay-Ess/cdbb606ae47c64049262dfbd3bb147d3f4ba8420
  3. Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: binary robust independent elementary features. In: Proceedings of European conference on computer vision. https://www.semanticscholar.org/paper/BRIEF%3A-Binary-Robust-Independent-Elementary-Calonder-Lepetit/2145f5cbac48df8ed9f7695606c34e98b26cf5a9
  4. Chen G, Lerman G (2009) Motion segmentation by SCC on the Hopkins 155 database. CoRR abs/0909.1608Google Scholar
  5. Dragon R, Rosenhahn B, Ostermann J (2012) Multi-scale clustering of frame-to-frame correspondences for motion segmentation. In: ECCV. http://citeseerx.ist.psu.edu/viewdoc/download?doi=%5C%5C10.1.1.725.7144%5C&rep=rep1%5C&type=pdf
  6. El-Alfy ES, Binsaadoon A (2019) Automated gait-based gender identification using fuzzy local binary patterns with tuned parameters. J Ambient Intell Hum Comput 10:2495–2504CrossRefGoogle Scholar
  7. Fang Y, Wu J, Huang B (2012) 2D sparse signal recovery via 2D orthogonal matching pursuit. Sci China Inf Sci 55(4):889–897MathSciNetCrossRefGoogle Scholar
  8. Flores-Mangas F, Jepson AD (2013) Fast rigid motion segmentation via incrementally-complex local models. In: 2013 IEEE conference on computer vision and pattern recognition, pp 2259–2266Google Scholar
  9. Jeon G, Anisetti M, Lee J, Bellandi V, Damiani E, Jeong J (2009) Concept of linguistic variable-based fuzzy ensemble approach: application to interlaced HDTV sequences. IEEE Trans Fuzzy Syst 17(6):1245–1258CrossRefGoogle Scholar
  10. Jeon G, Anisetti M, Wang L, Damiani E (2016) Locally estimated heterogeneity property and its fuzzy filter application for deinterlacing. Inf Sci 354:112–130CrossRefGoogle Scholar
  11. Jian YD, Chen CS (2010) Two-view motion segmentation with model selection and outlier removal by RANSAC-enhanced dirichlet process mixture models. Int J Comput Vis 88:489–501. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.3493%5C&rep=rep1%5C&type=pdf MathSciNetCrossRefGoogle Scholar
  12. Jung H, Ju J, Kim J (2014) Rigid motion segmentation using randomized voting. In: 2014 IEEE conference on computer vision and pattern recognition, pp 1210–1217Google Scholar
  13. Kanhere NK, Birchfield ST (2008) Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features. IEEE Trans Intell Transp Syst 9(1):148–160CrossRefGoogle Scholar
  14. Kanhere NK, Birchfield ST (2010) A taxonomy and analysis of camera calibration methods for traffic monitoring applications. IEEE Trans Intell Transp Syst 11(2):441–452CrossRefGoogle Scholar
  15. Lai T, Wang H, Yan Y, Chin TJ, Zhao WL (2017) Motion segmentation via a sparsity constraint. IEEE Trans Intell Transp Syst 18(4):973–983CrossRefGoogle Scholar
  16. Lee YH, Bang SI (2019) Improved image retrieval and classification with combined invariant features and color descriptor. J Ambient Intell Hum Comput 10(6):2255–2264CrossRefGoogle Scholar
  17. Leutenegger S, Chli M, Siegwart R (2011) BRISK: binary robust invariant scalable keypoints. In: Proceedings of IEEE conference on computer vision. https://www.semanticscholar.org/paper/BRISK%3A-Binary-Robust-invariant-scalable-keypoints-Leutenegger-Chli/86d27422aac2398cfe132ae8e312a6f2d190f754
  18. Li H (2007) Two-view motion segmentation from linear programming relaxation. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8Google Scholar
  19. Li Z, Guo J, Cheong LF, Zhou SZ (2013) Perspective motion segmentation via collaborative clustering. In: 2013 IEEE international conference on computer vision, pp 1369–1376. http://openaccess.thecvf.com/content%5C_iccv%5C_2013/papers/Li%5C_Perspective%5C_Motion%5C_Segmentation%5C_2013%5C_ICCV%5C_paper.pdf
  20. Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 International conference on computer vision, pp 1615–1622Google Scholar
  21. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. IEEE Trans Cybern 44:1432–1445. https://www.semanticscholar.org/paper/Robust-Subspace-Segmentation-by-Low-Rank-Liu-Lin/047175fb23f6f152d86e81100ba7140dd2847636 Google Scholar
  22. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35:171–184CrossRefGoogle Scholar
  23. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  24. Rao SR, Tron R, Vidal R, Ma Y (2008) Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In: 2008 IEEE conference on computer vision and pattern recognition, pp 1–8Google Scholar
  25. Rao SR, Yang AY, Sastry SS, Ma Y (2009) Robust algebraic segmentation of mixed rigid-body and planar motions from two views. Int J Comput Vis 88:425–446MathSciNetCrossRefGoogle Scholar
  26. Rao SR, Tron R, Vidal R, Ma Y (2010) Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans Pattern Anal Mach Intell 32:1832–1845CrossRefGoogle Scholar
  27. Rosin PL (1999) Measuring corner properties. Comput Vis Image Underst 73(2):291–307CrossRefGoogle Scholar
  28. Rosten E, Drummond T (2006) Machine learning for high speed corner detection. In: Proceedings of European conference on computer vision, pp 2091–2096. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3991%5C&rep=rep1%5C&type=pdf
  29. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: Proceedings of IEEE conference on computer vision, pp 2564–2571. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.4395%5C&rep=rep1%5C&type=pdf
  30. Schindler K, Suter D (2006) Two-view multibody structure-and-motion with outliers through model selection. IEEE Trans Pattern Anal Mach Intell 28:983–995CrossRefGoogle Scholar
  31. Shi J, Wu J, Anisetti M, Damiani E, Jeon G (2017) An interval type-2 fuzzy active contour model for auroral oval segmentation. Soft Comput 21(9):2325–2345CrossRefGoogle Scholar
  32. Sugaya Y, Kanatani K (2004) Geometric structure of degeneracy for multi-body motion segmentation. In: ECCV workshop SMVP. https://www.semanticscholar.org/paper/Geometric-Structure-of-Degeneracy-for-Multi-body-Sugaya-Kanatani/ab33459c40411e20d2d06c0a9ba4cfa5a07b1d02 Google Scholar
  33. Trobo IP, Díaz VG, Espada JP, Crespo RG, Moreno-Ger P (2019) Rapid modeling of human-defined AI behavior patterns in games. J Ambient Intell Hum Comput 10:2683–2692CrossRefGoogle Scholar
  34. Vidal R, Ma Y, Soatto S, Sastry SS (2005) Two-view multibody structure from motion. Int J Comput Vis 68:7–25CrossRefGoogle Scholar
  35. Wang J, Wu J, Wu Z, Anisetti M, Jeon G (2018) Bayesian method application for color demosaicking. Opt Eng 57(5):053102Google Scholar
  36. Wu J, Anisetti M, Wu W, Damiani E, Jeon G (2016) Bayer demosaicking with polynomial interpolation. IEEE Trans Image Process 25(11):5369–5382MathSciNetCrossRefGoogle Scholar
  37. Xuan W, Huansheng S, Qi G, Hua C, Zhaoyang Z, Haiying L (2018) Vehicle motion segmentation using rigid motion constraints in traffic video. Sustain Cities Soc 42:547–557CrossRefGoogle Scholar
  38. Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: ECCV. https://www.semanticscholar.org/paper/A-General-Framework-for-Motion-Segmentation%3A-Rigid%2C-Yan-Pollefeys/7785c92d471ef3d2ec132f3facf2c1f7ec7e56a5
  39. Zografos V, Nordberg K (2011) Fast and accurate motion segmentation using linear combination of views. In: BMVC. https://www.semanticscholar.org/paper/Fast-and-accurate-motion-segmentation-using-Linear-Zografos-Nordberg/981f32bc4a5d8550025384c9b131a1f721bf9e95

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer and Control EngineeringYantai UniversityYantaiChina
  2. 2.School of Information EngineeringChang’an UniversityXi’anChina

Personalised recommendations