Advertisement

Optimization algorithms, an effective tool for the design of digital filters; a review

  • Renjith V. RaviEmail author
  • Kamalraj Subramaniam
  • T. V. Roshini
  • Sundar Prakash Balaji Muthusamy
  • G. K. D. Prasanna Venkatesan
Original Research
  • 38 Downloads

Abstract

Nowadays, optimal and intelligent design approaches are vital in almost all areas of engineering. Scientists and engineers are attempting to make frameworks and models more proficient and intelligent. This paper deals with a detailed investigation on design of various digital filters using optimization algorithms. Generally digital filters are classified into two types which are FIR and IIR filters and are again classified into one dimensional, two dimensional and three dimensional filters for signal, image and video respectively. The design of a digital filter that satisfies all the required conditions perfectly is a challenging factor. So, apart from the conventional mathematical methods, optimization algorithms can be used to design optimal digital filters. IIR Filters are infinite impulse response filter; they have impulse response of infinite duration. FIR Filters are finite impulse response filters; they have impulse response of finite duration. In this paper we have discussed the design of various optimal digital filters based on various optimization algorithms, for processing of signal, image and video. The design of digital filters based on Evolutionary algorithms and swarm intelligence algorithms like Genetic Algorithm, Particle Swarm Optimization, Artificial Bee Colony Optimization, Cuckoo Search Algorithm, Differential Evolution, Gravitational Search, Harmony Search, Spiral Optimization, teaching–learning based optimization, wind driven optimization, hybridization of optimization algorithm are presented.

Keywords

Optimized filter design Evolved filter design Filter design using metaheuristic optimization Nature inspired filter design Filter design using optimization Bio inspired filter design Filter design using heuristic search Hybrid optimization algorithms 

Notes

References

  1. Ababneh JI, Bataineh MH (2008) Linear phase fir filter design using particle swarm optimization and genetic algorithms. Dig Signal Process 18(4):657–668.  https://doi.org/10.1016/j.dsp.2007.05.011 CrossRefGoogle Scholar
  2. Aggarwal A et al (2016) Optimal design of 2d fir filters with quadrantally symmetric properties using fractional derivative constraints. Circ Syst Signal Process 1:45.  https://doi.org/10.1007/s00034-016-0283-x zbMATHCrossRefGoogle Scholar
  3. Aggarwal S, Gagneja A, Panghal A (2012) Design of fir filter using ga and its comparison with hamming window and parks mcclellan optimization techniques. International Journal of Advanced Research in Computer Science and Software Engineering 2(7):132–136. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Design+of+FIR+Filter+Using+GA+and+its+Comparison+with+Hamming+window+and+Parks+McClellan
  4. Agrawal S, Sahu O (2015) Artificial bee colony algorithm to design two-channel quadrature mirror filter banks. Swarm Evolut Comput 21:24–31.  https://doi.org/10.1016/j.swevo.2014.12.001 CrossRefGoogle Scholar
  5. Ahmad SU (2008) Design of digital filters using genetic algorithms. PhD thesis, University of Victoria. http://hdl.handle.net/1828/1294
  6. Akay B, Karaboga D (2011) Wavelet packets optimization using artificial bee colony algorithm. In: Evolutionary computation (CEC), 2011 IEEE Congress on, IEEE, pp 89–94,  https://doi.org/10.1109/cec.2011.5949603
  7. Arun Sharma RK (2015) Design of optimum linear phase low pass fir filter using hybrid pso and gsa evolutionary algorithm. Int J Technol Res Eng 2(12):3017–3020. http://ijtre.com/images/scripts/2015021221.pdf
  8. Ashutosh P, Kasambe P (2013) Performance evaluation of evolutionary algorithms for digital filter design. Int J Sci Eng Technol 2(5):398–403. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.4079&rep=rep1&type=pdf
  9. Babb B, Moore F (2007) The best fingerprint compression standard yet. In: Systems, man and cybernetics. ISIC. IEEE International Conference on, IEEE, pp 2911–2916.  https://doi.org/10.1109/icsmc.2007.4414224
  10. Babb B, Becke S, Moore F (2005) Evolving optimized matched forward and inverse transform pairs via genetic algorithms. In: Circuits and systems. 48th Midwest Symposium on IEEE, pp 1055–1058.  https://doi.org/10.1109/mwscas.2005.1594286
  11. Babb BJ, Moore FW, Marshall P (2007) Evolved multiresolution analysis transforms for improved image compression and reconstiruction under quantization. In: Computational Intelligence in Image and Signal Processing, 2007. CIISP 2007. IEEE Symposium on, IEEE, pp 202–207.  https://doi.org/10.1109/ciisp.2007.369318
  12. Babb B, Moore F, Peterson M, Lamont G (2008a) Evolving better satellite image compression and reconstruction transforms. In: Proceedings of the 10th annual conference companion on Genetic and evolutionary computation, ACM, pp 1901–1906.  https://doi.org/10.1145/1388969.1388997
  13. Babb B, Moore F, Peterson M, Lamont G (2008b) Improved satellite image compression and reconstruction via genetic algorithms. In: SPIE Europe Security and Defence, International Society for Optics and Photonics, pp 711405–711405.  https://doi.org/10.1117/12.799891
  14. Babb B, Moore F, Peterson M (2009a) Optimized satellite image compression and reconstruction via evolution strategies. In: SPIE defense, security, and sensing, international society for optics and photonics. pp 73470O–73470O.  https://doi.org/10.1117/12.817700
  15. Babb BJ, Moore FW, Peterson MR (2009b) Improved multiresolution analysis transforms for satellite image compression and reconstruction using evolution strategies. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, ACM, pp 2547–2552.  https://doi.org/10.1145/1570256.1570359
  16. Beant Singh DS (2015) Craziness based particle swarm optimization algorithm for digital band pass fir filter. Int J Adv Res Comput Sci Softw Eng 5(6):1133–1139. http://ijarcsse.com/Before_August_2017/docs/papers/Volume_5/6_June2015/V5I6-0439.pdf
  17. Bhargava A (2013) A survey report for design of fir filter with different method. Int J Sci Eng Technol Res 2(2):461. https://pdfs.semanticscholar.org/652f/614d4ec4a8f95166d57a5c3b74998328a44f.pdf
  18. Boudjelaba K, Ros F, Chikouche D (2014) Adaptive genetic algorithm-based approach to improve the synthesis of two-dimensional finite impulse response filters. Signal Process IET 8(5):429–446.  https://doi.org/10.1049/iet-spr.2013.0005 CrossRefGoogle Scholar
  19. Boukhobza A, Ahmed AT, Bounoua A, Taleb N (2009a) A filter banks design using a multiobjective genetic algorithm for embedded image coding scheme. In: Image and Signal Processing and Analysis, 2009. ISPA 2009. Proceedings of 6th International Symposium on, IEEE, pp 776–781.  https://doi.org/10.1109/ispa.2009.5297647
  20. Boukhobza A, Bounoua A, Ahmed AT, Taleb N (2009b) A filter banks design using a multiobjecive genetic algorithm for an image coding scheme. In: Image Processing (ICIP), 2009 16th IEEE International Conference on, IEEE, pp 1933–1936.  https://doi.org/10.1109/icip.2009.5413533
  21. Boukhobza A, Ahmed AT, Taleb N, Bounoua A (2013a) Optimization design of orthogonal filter banks for image coding via multi-objective genetic algorithm. Department of Electronics, UHBC University. https://projet.liris.cnrs.fr/coresa10/actes_coresa_2010/poster/133.pdf
  22. Boukhobza A, Ahmed AT, Taleb N, Bounoua A (2013b) Optimization design of orthogonal filter banks for image coding via multi-objective genetic algorithm. Department of Electronics, UHBC University. https://projet.liris.cnrs.fr/coresa10/actes_coresa_2010/poster/133.pdf
  23. Boukhobza A, Bounoua A, Taleb-Ahmed A, Taleb N (2013b) Design of biorthogonal filter banks using a multi-objective genetic algorithm for an image coding scheme. Circuits, Syst Signal Process 32(4):1725–1744.  https://doi.org/10.1007/s00034-012-9534-7 CrossRefGoogle Scholar
  24. Chandra A, Chattopadhyay S (2014) Supremacy of differential evolution algorithm in designing multiplier-less low-pass fir filter. Int J Electr Electr Sci Eng 8(2):1–10. https://waset.org/Publication/supremacy-of-differential-evolution-algorithm-in-designing-multiplier-less-low-pass-fir-filter/9997723
  25. Dey AK, Saha S, Saha A, Ghosh S (2010) A method of genetic algorithm (ga) for fir filter construction: design and development with newer approaches in neural network platform. Int J Adv Comput Sci Appl 1(6):87–90.  https://doi.org/10.14569/ijacsa.2010.010614 CrossRefGoogle Scholar
  26. Ellappan V, Samson Ravindran R (2016) Optimal filter design of wavelet transform to an adaptive medical image compression technique using genetic group search optimizer. J Med Imaging Health Inf 6(2):484–493.  https://doi.org/10.1166/jmihi.2016.1708 CrossRefGoogle Scholar
  27. Er Karamjeet Singh GK (2014) Evolutionary approach for filter design: a review. Int J Adv Res Comput Sci Softw Eng 4(6):160–162. http://ijarcsse.com/Before_August_2017/docs/papers/Volume_4/6_June2014/V4I6-0147.pdf
  28. Fang W, Sun J, Xu W, Liu J (2006) Fir digital filters design based on quantum-behaved particle swarm optimization. In: Proceedings of the first international conference on innovative computing, information and control-volume 1, IEEE Computer Society, pp 615–619.  https://doi.org/10.1109/icicic.2006.77
  29. Gentili P, Piazza F, Uncini A (1995) Efficient genetic algorithm design for power-of-two fir filters. In: Acoustics, speech, and signal processing, 1995. ICASSP-95., 1995 International Conference on, IEEE, vol 2, pp 1268–1271.  https://doi.org/10.1109/icassp.1995.480470
  30. Ghosh S, Kundu D, Suresh K, Das S, Abraham A (2009) Design of optimal digital iir filters by using a bandwidth adaptive harmony search algorithm. In: Nature and biologically inspired computing, 2009. NaBIC 2009. World Congress on, IEEE, pp 481–486.  https://doi.org/10.1109/nabic.2009.5393362
  31. Grasemann U, Miikkulainen R (2004) Evolving wavelets using a coevolutionary genetic algorithm and lifting. In: Genetic and evolutionary computation—GECCO. Springer, pp 969–980,  https://doi.org/10.1007/978-3-540-24855-2109
  32. Grasemann U, Miikkulainen R (2005) Effective image compression using evolved wavelets. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation, ACM, pp 1961–1968.  https://doi.org/10.1145/1068009.1068338
  33. Han J, Zhao X, Qiu C (2016) A digital image watermarking method based on host image analysis and genetic algorithm. J Ambient Intell Hum Comput 7(1):37–45.  https://doi.org/10.1007/s12652-015-0298-3 CrossRefGoogle Scholar
  34. Hill Y, OKeefe S, Thiel D (2001) An investigation of wavelet design using genetic algorithms. In: Microelectronic Engeneering Research Conference, URL https://maxwell.ict.griffith.edu.au/school/merc/Hill.pdf
  35. Jones E, Runkle P, Dasgupta N, Couchman L, Carin L (2001a) Genetic algorithm wavelet design for signal classification. IEEE Trans Pattern Anal Mach Intell 8:890–895.  https://doi.org/10.1109/34.946991 CrossRefGoogle Scholar
  36. Jones E, Runkle P, Dasgupta N, Couchman L, Carin L (2001b) Genetic algorithm wavelet design for signal classification. IEEE Trans Pattern Anal Mach Intell 23(8):890–895.  https://doi.org/10.1109/34.946991 CrossRefGoogle Scholar
  37. Karabo˘ga N, C¸etinkaya B (2003) Optimal design of minimum phase digital fir filters by using genetic algorithm. In: 3rd International Conference on Electrical and Electronics Engineering, pp 176–179, URL http://emo.org.tr/ekler/cf9d6bd14a20958_ek.pdf
  38. Karabo˘ga N, C¸etinkaya B (2005) Efficient design of fixed point digital fir filters by using differential evolution algorithm. In: Computational intelligence and bioinspired systems. Springer, pp 812–819.  https://doi.org/10.1007/11494669 99
  39. Karaboga N (2005) Digital iir filter design using differential evolution algorithm. EURASIP J Appl Signal Process 2005:1269–1276.  https://doi.org/10.1155/asp.2005.1269 zbMATHCrossRefGoogle Scholar
  40. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital iir filters. J Franklin Inst 346(4):328–348.  https://doi.org/10.1016/j.jfranklin.2008.11.003 MathSciNetzbMATHCrossRefGoogle Scholar
  41. Karaboga N, Cetinkaya B (2008) design of minimum phase digital llr filters by using genetic algorithm. Engineering intelligent systems for electrical engineering and communications 16(1):61–68. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Design+of+minimum+phase+digital+llR+filters+by+using+genetic+algorithm&btnG=
  42. Kashihara K (2013) Automatic design of a novel image filter based on the ga-em algorithm for vein shapes. In: Systems, man, and cybernetics (SMC), 2013 IEEE International Conference on, IEEE, pp 3897–3902.  https://doi.org/10.1109/smc.2013.665
  43. Kaur P, Kaur S (2012) Optimization of fir filters design using genetic algorithm. Int J Emerging Trends Technol Comput Sci (IJETTSC) 1(3):228–232. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+FIR+Filters+Design+using+Genetic+Algorithm&btnG=
  44. Kaur R, Patterh MS, Dhillon J (2013) Digital iir filter design using real coded genetic algorithm. Int J Inf Technol Comput Sci (IJITCS) 5(7):27.  https://doi.org/10.5815/ijitcs.2013.07.03 CrossRefGoogle Scholar
  45. Kubasek R, Smekal Z, Gescheidtova E, Bartusek K (2006) Design of two-channel half-band bank of digital filters using optimization methods. In: Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, 2006. ICN/ICONS/MCL 2006. International Conference on, IEEE, pp 151–151.  https://doi.org/10.1109/icniconsmcl.2006.75
  46. Kumar M, Rawat TK (2015) Optimal fractional delay-iir filter design using cuckoo search algorithm. ISA Trans 59:39–54.  https://doi.org/10.1016/j.isatra.2015.08.007 CrossRefGoogle Scholar
  47. Kumar PU, Sarma GK, Das SM, Kamalnath M (2013) Design of optimal digital fir filter using particle swarm optimization algorithm. In: Advances in computational science, engineering and information technology. Springer, pp 187–196.  https://doi.org/10.1007/978-3-319-00951-319
  48. Lee A, Ahmadi M, Jullien G, Miller W, Lashkari R (1998) Digital filter design using genetic algorithm. In: Advances in digital filtering and signal processing, 1998 IEEE Symposium on, IEEE, pp 34–38.  https://doi.org/10.1109/adfsp.1998.685690
  49. Li D (2015) Design of two-dimensional recursive iir filters using cooperative quantum particle swarm optimization with dynamic varying search area and l´evy flights. J Comput Theor Nanosci 12(9):2678–2686.  https://doi.org/10.1166/jctn.2015.4162 CrossRefGoogle Scholar
  50. Li X, Wang G (2015) Optimal band selection for hyperspectral data with improved differential evolution. J Ambient Intell Hum Comput 6(5):675–688.  https://doi.org/10.1007/s12652-015-0285-8 MathSciNetCrossRefGoogle Scholar
  51. Liu G, Li Y, He G (2010) Design of digital fir filters using differential evolution algorithm based on reserved genes. In: IEEE congress on evolutionary computation, IEEE, pp 1–7.  https://doi.org/10.1109/cec.2010.5586425
  52. Luitel B, Venayagamoorthy GK (2008) Differential evolution particle swarm optimization for digital filter design. In: Evolutionary computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on, IEEE. pp 3954–3961.  https://doi.org/10.1109/cec.2008.4631335
  53. Mandal S, Kar R, Mandal D, Ghoshal SP (2011) Swarm intelligence based optimal linear phase fir high pass filter design using particle swarm optimization with constriction factor and inertia weight approach. World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering 5(8):1111–1116. https://www.idc-online.com/technical_references/pdfs/electrical_engineering/Swarm%20Intelligence.pdf
  54. Mandal S, Ghoshal SP, Kar R, Mandal D (2012a) Design of optimal linear phase fir high pass filter using craziness based particle swarm optimization technique. J King Saud Univ Comput Inf Sci 24(1):83–92.  https://doi.org/10.1016/j.jksuci.2011.10.007 CrossRefGoogle Scholar
  55. Mandal S, Mallick P, Mandal D, Kar R, Ghoshal SP (2012b) Optimal fir band pass filter design using novel particle swarm optimization algorithm. In: Humanities, Science and Engineering Research (SHUSER), 2012 IEEE Symposium on, IEEE, pp 141–146.  https://doi.org/10.1109/shuser.2012. 6268827
  56. Mandal D, Kar R, Ghoshal SP (2014) Digital fir filter design using fitness based hybrid adaptive differential evolution with particle swarm optimization. Nat Comput 13(1):55.  https://doi.org/10.1007/s11047-013-9381-x MathSciNetCrossRefGoogle Scholar
  57. Marshal P, Moore F (2004) Evolving novel coefficient sets for optimized reconstruction of quantized one-dimensional (1-d) and two-dimensional (2-d) signals. 2004 visiting faculty research program (vfrp) in-house work at afrl/ifta. Tech. rep., DTIC Document.  https://doi.org/10.21236/ada435968
  58. Masoodian S, Bazrafshan A, Mashhadi HR (2012) Biomedical signal denoising by adaptive wavelet design using genetic algorithms. In: Electrical engineering (ICEE), 2012 20th Iranian Conference on, IEEE, pp 1590–1593.  https://doi.org/10.1109/iraniancee.2012.6292614
  59. Mastorakis NE, Gonos IF, Swamy M (2003) Design of two-dimensional recursive filters using genetic algorithms. IEEE Trans Circ Syst I Fund Theory Appl 50(5):634–639.  https://doi.org/10.1109/tcsi.2003.811019 CrossRefGoogle Scholar
  60. Miller C, Moore F, Babb B, Peterson MR (2011) Improved reconstruction of quantized ct scans via genetic algorithms. In: Evolutionary Computation (CEC), 2011 IEEE Congress on, IEEE, pp 2293–2299.  https://doi.org/10.1109/cec.2011.5949900
  61. Mitiche L, Adamou-Mitiche ABH (2014) An efficient low order model for two-dimensional digital systems: application to the 2d digital filters. J King Saud University-Comput Inf Sci 26(3):308–318.  https://doi.org/10.1016/j.jksuci.2014.03.003 CrossRefGoogle Scholar
  62. Mitiche L, Adamou-Mitiche ABH, Kacem O, Sima V (2012) Model reduction of 2-d iir filters. J Signal Inf Process 3(04):438.  https://doi.org/10.4236/jsip.2012.34057 CrossRefGoogle Scholar
  63. Mondal S, Vasundhara RK, Mandal D, Ghoshal S (2011) Linear phase high pass fir filter design using improved particle swarm optimization. World Acad Sci Eng Technol 60:1620–1627.  https://doi.org/10.1109/scored.2011.6148765 CrossRefGoogle Scholar
  64. Mondal S, Chakraborty D, Kar R, Mandal D, Ghoshal SP (2012a) Novel particle swarm optimization for high pass fir filter design. In: Humanities, Science and Engineering Research (SHUSER), 2012 IEEE Symposium on, IEEE, pp 413–418.  https://doi.org/10.1109/shuser.2012.6268874
  65. Mondal S, Ghoshal S, Kar R, Mandal D (2012b) Novel particle swarm optimization for low pass fir filter design. WSEAS Trans Signal Process 3:111–120.  https://doi.org/10.1109/shuser.2012.6268874 CrossRefGoogle Scholar
  66. Mondal S, Ghoshal SP, Kar R, Mandal D (2012c) Differential evolution with wavelet mutation in digital finite impulse response filter design. J Optim Theory Appl 155(1):315–324.  https://doi.org/10.1007/s10957-012-0028-3 MathSciNetzbMATHCrossRefGoogle Scholar
  67. Moore F (2005a) Evolved multiresolution transforms for optimized image compression and reconstruction under quantization. Tech. rep., DTIC document. https://apps.dtic.mil/dtic/tr/fulltext/u2/a451265.pdf
  68. Moore FW (2005b) A genetic algorithm for optimized reconstruction of quantized one-dimensional signals. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation, ACM, pp 1599–1600.  https://doi.org/10.1145/1068009.1068278
  69. Moore FW (2005c) A genetic algorithm for optimized reconstruction of quantized signals. In: Evolutionary Computation, 2005. The 2005 IEEE Congress on, IEEE, vol 1, pp 105–111.  https://doi.org/10.1109/cec.2005.1554673
  70. Moore FW (2006) Evolved transforms for signal compression and reconstruction under quantization. In: Defense and security symposium, international society for optics and photonics, pp 62280T–62280T.  https://doi.org/10.1117/12.668380
  71. Moore F, Babb B (2006a) Revolutionary image compression and reconstruction via evolutionary computation, part 2: multiresolution analysis transforms. WSEAS Trans Signal Process 2(9):1209–1214. https://pdfs.semanticscholar.org/27e9/bcaf376ff26a1b179101465f662c776bdb30.pdf
  72. Moore FW, Babb BJ (2006b) Evolved transforms for improved image compression and reconstruction under quantization. In: Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Citeseer, pp 127–134. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.590.2636&rep=rep1&type=pdf
  73. Moore FW, Babb B (2008) A differential evolution algorithm for optimizing signal compression and reconstruction transforms. In: Proceedings of the 10th annual conference companion on Genetic and evolutionary computation, ACM, pp 1907–1912.  https://doi.org/10.1145/1388969.1388998
  74. Moore F, Marshall P (2005) Evolving next generation signal compression and reconstruction transforms via genetic algorithms. In: Proceedings of the 7th annual workshop on Genetic and evolutionary computation, ACM, pp 190–192.  https://doi.org/10.1145/1102256.1102302
  75. Moore F, Marshall P, Balster E (2004) Adaptive filtering in the wavelet transform domain via genetic algorithms. Tech. rep., DTIC Document.  https://doi.org/10.21236/ada427113
  76. Moore F, Babb B, Becke S, Koyuk H, Lamson III E, Wedge C (2005a) Genetic algorithms evolve optimized transforms for signal processing applications. Tech. rep., DTIC Document.  https://doi.org/10.21236/ada437529
  77. Moore F, Marshall P, Balster E (2005b) Evolved transforms for image reconstruction. In: Evolutionary Computation, 2005. The 2005 IEEE Congress on, IEEE, vol 3, pp 2310–2316.  https://doi.org/10.1109/cec.2005.1554982
  78. Moore F, Babb B, Aldridge S, Peterson MR (2011) Evolving matched forward and inverse transforms for improved lossy compression of images from mars. In: Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, IEEE, pp 484–489.  https://doi.org/10.1109/icsmc.2011.6083712
  79. Mukhopadhyay A, Kar R, Mandal D, Mandal S, Ghoshal S (2012) Optimal design of linear phase fir band stop filter using particle swarm optimization with improved inertia weight technique. In: Computer Science and Software Engineering (JCSSE), 2012 International Joint Conference on, IEEE, pp 168–173.  https://doi.org/10.1109/jcsse.2012.6261946
  80. Neretti N, Intrator N (2002) An adaptive approach to wavelet filters design. In: Neural Networks for Signal Processing, 2002. Proceedings of the 2002 12th IEEE Workshop on, IEEE, pp 317–326.  https://doi.org/10.1109/nnsp.2002.1030043
  81. Nidhi Mishra NJ (2015) Literature review on fir filter optimization. International Journal of Digital Application & Contemporary Research 4(1). https://pdfs.semanticscholar.org/33ca/d37bf96053d1510f2927891721d3166f51ab.pdf
  82. Nirmala P (2015) Optimization of image denoising filters using harmony search—an experimental analysis. Middle-East J Sci Res 23:305–308.  https://doi.org/10.5829/idosi.mejsr.2015.23.ssps.113 CrossRefGoogle Scholar
  83. Oner M (1998) A genetic algorithm for optimisation of linear phase fir filter coefficients. In: Signals, systems & computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on, IEEE, vol 2, pp 1397–1400.  https://doi.org/10.1109/acssc.1998.751556
  84. Paul B, Shanavaz K, Mythili P (2012) Towards the development of a new wavelet for ecg classification. In: Power, signals, controls and computation (EPSCICON), 2012 International Conference on, IEEE, pp 1–5.  https://doi.org/10.1109/epscicon.2012.6175283
  85. Paul B, Shanavaz K, Mythili P (2015) A new optimized wavelet transform for heart beat classification. J Mech Med Biol 15(05):1550081.  https://doi.org/10.1142/s0219519415500815 CrossRefGoogle Scholar
  86. Peterson M, Lamont G, Moore F (2006a) Evaluating mutation operators for evolved image reconstruction transforms. In: Proceedings of the eighth annual genetic and evolutionary computation conference (GECCO2006), vol 7, pp 08–12. http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006etc/papers/wksp132.pdf
  87. Peterson MR, Lamont GB, Moore F (2006b) Improved evolutionary search for image reconstruction transforms. In: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, IEEE, pp 2880–2887.  https://doi.org/10.1109/cec.2006.1688671
  88. Peterson MR, Lamont GB, Moore F, Babb B (2007a) Variation operator performance for evolved image reconstruction transforms. In: Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on, IEEE, pp 2917–2922.  https://doi.org/10.1109/icsmc.2007.4414225
  89. Peterson MR, Lamont GB, Moore F, Marshall P (2007b) Evolving military-grade image transforms using state-of-the-art variation operators. In: Defense and security symposium, international society for optics and photonics, pp 65630H–65630H.  https://doi.org/10.1117/12.720920
  90. Peterson MR, Lamont GB, Moore F, Marshall P (2007c) A satellite image set for the evolution of image transforms for defense applications. In: Proceedings of the 9th annual conference companion on Genetic and evolutionary computation, ACM, pp 2901–2906.  https://doi.org/10.1145/1274000.1274031
  91. Peterson MR, Lamont GB, Moore F, Marshall P (2007d) Targeted filter evolution for improved image reconstruction resolution. In: Proceedings of the 9th annual conference on genetic and evolutionary computation, ACM, pp 2137–2144.  https://doi.org/10.1145/1276958.1277371
  92. Peterson MR, Horner T, Moore F (2011) Evolving matched filter transform pairs for satellite image processing. In: SPIE defense, security, and sensing, international society for optics and photonics, pp 80590L–80590L.  https://doi.org/10.1117/12.884312
  93. Proakis J, Manolakis D (2007) Digital signal processing. Prentice Hall international editions. Pearson Prentice Hall, Upper Saddle River.  https://doi.org/10.1093/med/9780190259631.003.0015 CrossRefGoogle Scholar
  94. Qiang L, Li L, Qingli R, Hongjun H (2008a) Optimization design of biorthogonal filter banks for image compressing. In: Information science and engineering, 2008. ISISE’08. International Symposium on, IEEE, vol 2, pp 539–543.  https://doi.org/10.1109/isise.2008.336
  95. Qiang L, Li L, Qingli R, Hongjun H (2008b) Optimization design of biorthogonal filter banks for image compressing. In: Information science and engineering, 2008. ISISE’08. International Symposium on, IEEE, vol 2, pp 539–543.  https://doi.org/10.1109/isise.2008.336
  96. Qiang L, Li L, Qingli R, Hongjun H (2008c) Optimization design of biorthogonal filter banks for image compressing. In: Information science and engineering, 2008. ISISE’08. International Symposium on, IEEE, vol 2, pp 539–543.  https://doi.org/10.1109/isise.2008.336
  97. Raaed Faleh Hassan ASA (2013) Design of finite impulse response filters based on genetic algorithm. Diyala J Eng Sci 06(03):28–39. https://www.iasj.net/iasj?func=article&aId=82500
  98. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122.  https://doi.org/10.1016/j.engappai.2010.05.007 zbMATHCrossRefGoogle Scholar
  99. S Jayaraman SE, Veerakumar T (2011) Digital Image Processing. Tata McGraw-Hill Education Sabbir U, Antoniou A (2006) Design of digital filters using genetic algorithms. In: 6th IEEE international symposium on signal processing and information technology. https://pdfs.semanticscholar.org/4bca/88151efa276f4093c8167179b65bc7101cbb.pdf
  100. Saha SK, et. al. (2012b) Gravitational search algorithm in digital fir low pass filter design. In: Emerging Applications of Information Technology (EAIT),2012 Third International Conference on, IEEE, pp 52–55.  https://doi.org/10.1109/eait.2012.6407860
  101. Saha SK, et. al (2013b) Adaptive particle swarm optimization for low pass finite impulse response filter design. In: Communications and signal processing (ICCSP), 2013 International Conference on, IEEE, pp 19–23.  https://doi.org/10.1109/iccsp.2013.6577006
  102. Saha SK, Kar R, Mandai T, Kumar N, Ghoshal SP (2012a) Optimal linear phase fir high pass filter design using psocfiwa-wm. In: Information and Communication Technologies (WICT), 2012 World Congress on, IEEE, pp 768–773.  https://doi.org/10.1109/wict.2012.6409178
  103. Saha S et al (2013) Efficient and accurate optimal linear phase fir filter design using opposition-based harmony search algorithm. Sci World J.  https://doi.org/10.1155/2013/320489 CrossRefGoogle Scholar
  104. Saha SK et al (2014) Gravitation search algorithm: application to the optimal iir filter design. J King Saud Univ Eng Sci 26(1):69–81.  https://doi.org/10.1016/j.jksues.2012.12.003 CrossRefGoogle Scholar
  105. Salvador et. al. (2010) Evolutionary design and optimization of wavelet transforms for image compression in embedded systems. In: Adaptive hardware and systems (AHS), 2010 NASA/ESA Conference on, IEEE, pp 171–178.  https://doi.org/10.1109/ahs.2010.5546265
  106. Salvador R, Moreno F, Riesgo T, Sekanina L (2011) Evolutionary approach to improve wavelet transforms for image compression in embedded systems. EURASIP J Adv Signal Process 1:973806.  https://doi.org/10.1155/2011/973806 CrossRefGoogle Scholar
  107. Severino AG, Linhares LL, de Araujo FM (2015) Optimal design of digital low pass finite impulse response filter using particle swarm optimization and bat algorithm. In: Informatics in control, automation and robotics (ICINCO), 2015 12th International Conference on, IEEE, vol 1, pp 207–214.  https://doi.org/10.5220/0005545902070214
  108. Shaheen AM, Sheltami TR, Al-Kharoubi TM, Shakshuki E (2018) Digital image encryption techniques for wireless sensor networks using image transformation methods: Dct and dwt. J Ambient Intell Hum Comput, pp 1–18.  https://doi.org/10.1007/s12652-018-0850-z
  109. Shanavaz K, Mythili P (2010) An improved technique for evolving wavelet coefficients for fingerprint image compression. In: Communication Control and Computing Technologies (ICCCCT), 2010 IEEE International Conference on, IEEE, pp 665–669.  https://doi.org/10.1109/icccct.2010.5670756
  110. Shanavaz K, Mythili P (2012) Evolution of better wavelet coefficients for fingerprint image compression using cropped images. In: Advances in computing and communications (ICACC), 2012 International Conference on, IEEE, pp 126–129.  https://doi.org/10.1109/icacc.2012.28
  111. Shanavaz K, Mythili P (2013) Faster techniques to evolve wavelet coefficients for better fingerprint image compression. Int J Electr 100(5):655–668.  https://doi.org/10.1080/00207217.2012.720944 CrossRefGoogle Scholar
  112. Shark LK, Yu C (2003) Design of optimal shift-invariant orthonormal wavelet filter banks via genetic algorithm. Signal Process 83(12):2579–2591.  https://doi.org/10.1016/j.sigpro.2003.07.001 zbMATHCrossRefGoogle Scholar
  113. Sherlock BG, Monro DM (1996) Optimized wavelets for fingerprint compression. In: Acoustics, speech, and signal processing, 1996. ICASSP-96. Conference Proceedings. IEEE International Conference on, IEEE, vol 3, pp 1447–1450.  https://doi.org/10.1109/icassp.1996.543934
  114. Shirvani A, Khezri K, Razzazi F, Caro L (2009) Designing linear phase fir filters with particle swarm optimization and harmony search. In: Signal processing, image processing and pattern recognition. Springer, pp 193–200.  https://doi.org/10.1007/978-3-642-10546-3 24
  115. Singh AP (2014) Design of linear phase low pass fir filter using particle swarm optimization algorithm. Int J Comput Appl 98(3):40–44.  https://doi.org/10.5120/17166-7229 CrossRefGoogle Scholar
  116. Singh R, Arya SK (2012) Optimization of iir digital filters using particle swarm optimization. In: Proceedings of the international conference on communication, information & computing technology (ICCICT), IEEE, pp 1–7.  https://doi.org/10.1109/iccict.2012.6398172
  117. Singh A, Grewal NS (2014) Review on fir filter designing by implementations of different optimization algorithms. Int J Adv Inf Sci Technol 31(31):171–175. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.677.4505&rep=rep1&type=pdf
  118. Singh T, Josan HS (2014) Design of low pass digital fir filter using cuckoo search algorithm. Int J Eng Res Appl 4(8):72–77Google Scholar
  119. Sinha A, Singh K (2003) Design of a composite wavelet matched filter using breeder genetic algorithm. Optical review 10(4):251–254.  https://doi.org/10.1007/s10043-003-0251-0 CrossRefGoogle Scholar
  120. Su S, Zhao S (2017) A hierarchical hybrid of genetic algorithm and particle swarm optimization for distributed clustering in large-scale wireless sensor networks. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-017-0619-9 CrossRefGoogle Scholar
  121. Sundhari RM, Anita DR (2015) An optimized fir filter design using particle swarm optimization. Aust J Basic Appl Sci 9(20):11–19. http://www.ajbasweb.com/old/ajbas/2015/June/11-19.pdf
  122. Tang KS, Man KF, Kwong S, Liu ZF (1998) Design and optimization of iir filter structure using hierarchical genetic algorithms. Ind Electr IEEE Trans 45(3):481–487.  https://doi.org/10.1109/41.679006 CrossRefGoogle Scholar
  123. Tzeng S (1998) Design of multi-bandpass fir digital filters by genetic algorithm approach. Department of Electronic Engineering, Kaoyuan Institute of Technology. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.565.9408&rep=rep1&type=pdf
  124. Vaithiyanathan D, Seshasayanan R, Kunaraj K, Keerthiga J (2014) An evolved wavelet library based on genetic algorithm. Sci World J.  https://doi.org/10.1155/2014/494319 CrossRefGoogle Scholar
  125. Vasundhara Mandal D, Ghoshal SP, Kar R (2013) Digital fir filter design using hybrid random particle swarm optimization with differential evolution. Int J Comput Intell Syst 6(5):911–927.  https://doi.org/10.1080/18756891.2013.808427 CrossRefGoogle Scholar
  126. Wan C, Yuan X, Dai X, Zhang T, He Q (2018) A self-adaptive multi-objective harmony search based fuzzy clustering technique for image segmentation. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-018-0762-y CrossRefGoogle Scholar
  127. Xue L, Rongchun Z, Qing W (2003) Optimizing the design of iir filter via genetic algorithm. In: Neural Networks and Signal Processing, 2003. Proceedings of the 2003 International Conference on, IEEE, vol 1, pp 476–479.  https://doi.org/10.1109/icnnsp.2003.1279314
  128. Yadwinder Kumar E (2013) Design of optimum digital fir low pass filter using hybrid of ga & pso optimization. International Journal of Advanced Research in Computer Science and Software Engineering 3(9):685–692. https://pdfs.semanticscholar.org/115a/b3aa4915185549dcb488a432934bc6e9602a.pdf
  129. Zhao Ax, Tang Xj, Zhang Zh, Liu Jh (2014) The optimal design method of fir filter using the improved genetic algorithm. In: Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on, IEEE, pp 452–455.  https://doi.org/10.1109/iciea.2014.6931206
  130. Zhao Z, Gao H (2009) Fir digital filters based on cultural particle swarm optimization. In: Proc. 2009 International Workshop on Iriformation Security and Application (IWISA 2009), Qingdao, China, Citeseer, pp 252–255. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.9230&rep=rep1&type=pdf#page=270
  131. Zhao Z, Gao H, Liu Y (2011) Chaotic particle swarm optimization for fir filter design. In: Electrical and Control Engineering (ICECE), International Conference on, IEEE, pp 2058–2061.  https://doi.org/10.1109/iceceng.2011.6057672

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Renjith V. Ravi
    • 1
    Email author
  • Kamalraj Subramaniam
    • 2
  • T. V. Roshini
    • 3
  • Sundar Prakash Balaji Muthusamy
    • 4
  • G. K. D. Prasanna Venkatesan
    • 5
  1. 1.Department of Electronics and Communication EngineeringMEA Engineering CollegeMalappuramIndia
  2. 2.Department of Electronics and Communication EngineeringKarpagam Academy of Higher EducationCoimbatoreIndia
  3. 3.Department of Electronics and Communication EngineeringVimal Jyothi College of EngineeringKannurIndia
  4. 4.Department of Electronics and Communication EngineeringRVS Technical CampusCoimbatoreIndia
  5. 5.Faculty of EngineeringKarpagam Academy of Higher EducationCoimbatoreIndia

Personalised recommendations