Advertisement

Scheduling RFID networks in the IoT and smart health era

  • Fabio Campioni
  • Salimur ChoudhuryEmail author
  • Fadi Al- Turjman
Original Research
  • 16 Downloads

Abstract

As a potential way to dramatically save energy and live in a green and smarter planet, the internet of things (IoT) aims to utilize energy-efficient enabling technologies such as the RFID systems in our daily life applications. RFID, or Radio Frequency Identification, is used to efficiently locate items using tags and readers. In this paper, we propose localized reader scheduling algorithms for RFID networks. We consider readers with limited amounts of energy, powered by a battery. Using only local information, the readers schedule themselves to minimize energy usage and maximize network lifetime. We compare the performance of our localized algorithms to a centralized heuristic (the research problem is NP hard) based on a set cover approximation solution and show that the localized algorithms obtain equal or better performance in comparison to centralized solution, achieving 5% higher area under the curve (AUC) in scenarios with 50% readers, and 13 and 8% higher AUC in 25% and 15% reader scenarios, respectively.

Keywords

RFID Networks Scheduling IoT Localized algorithms 

Notes

References

  1. Bueno-Delgado MV, Pavón-Mariño P (2013) A maximum likelihood-based distributed protocol for passive RFID dense reader environments. J Supercomput 64(2):456–476.  https://doi.org/10.1007/s11227-012-0779-5 CrossRefGoogle Scholar
  2. Cardei M, Du DZ (2005) Improving wireless sensor network lifetime through power aware organization. Wireless Netw 11(3):333–340.  https://doi.org/10.1007/s11276-005-6615-6 CrossRefGoogle Scholar
  3. Chen NK, Chen JL, Lee CC (2009) Array-based reader anti-collision scheme for highly efficient RFID network applications. Wireless Commun Mobile Comput 9(7):976–987.  https://doi.org/10.1002/wcm.646 CrossRefGoogle Scholar
  4. Choudhury S (2012) Cellular automaton based algorithms for wireless sensor networks. Queen’s University, KingstonzbMATHGoogle Scholar
  5. Choudhury S, Akl SG, Salomaa K (2012a) Energy efficient cellular automaton based algorithms for mobile wireless sensor networks. In: 2012 IEEE wireless communications and networking conference (WCNC), Shanghai, pp 2341–2346.  https://doi.org/10.1109/WCNC.2012.6214185
  6. Choudhury S, Salomaa K, Akl SG (2012b) A cellular automaton model for connectivity preserving deployment of mobile wireless sensors. In: 2012 IEEE international conference on communications (ICC), Ottawa, ON, pp 6545–6549.  https://doi.org/10.1109/ICC.2012.6364914
  7. Choudhury S, Salomaa K, Akl SG (2012c) A cellular automaton model for wireless sensor networks. J Cell Automata 7(3):223–241zbMATHGoogle Scholar
  8. Choudhury S, Salomaa K, Akl SG (2014) Cellular automaton-based algorithms for the dispersion of mobile wireless sensor networks. Int J Parallel Emerg Distrib Syst 29(2):147–177CrossRefGoogle Scholar
  9. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235.  https://doi.org/10.1287/moor.4.3.233.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Domdouzis K, Kumar B, Anumba C (2007) Radio-Frequency Identification (RFID) applications: a brief introduction. Adv Eng Inform 21(4):350–355.  https://doi.org/10.1016/j.aei.2006.09.001 CrossRefGoogle Scholar
  11. El Fissaoui M, Beni-Hssane A, Saadi M (2018) Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-018-0704-8 Google Scholar
  12. Garzon M (2012) Models of massive parallelism: analysis of cellular automata and neural networks. Texts in theoretical computer science. An EATCS Series. Springer, Berlin. https://books.google.ca/books?id=e8OqCAAAQBAJ. Accesed Feb 2018Google Scholar
  13. Hassan MY, Hussain F, Choudhury S (2018) Connectivity preserving obstacle avoidance localized motion planning algorithms for mobile wireless sensor networks. Peer-to-Peer Netw Appl.  https://doi.org/10.1007/s12083-018-0656-y Google Scholar
  14. Kumar V, Kumar A (2018a) Improved network lifetime and avoidance of uneven energy consumption using load factor. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-018-0857-5 Google Scholar
  15. Kumar V, Kumar A (2018b) Improving reporting delay and lifetime of a WSN using controlled mobile sinks. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-018-0901-5 Google Scholar
  16. Lounis M, Bounceur A, Laga A, Pottier B (2015) GPU-based parallel computing of energy consumption in wireless sensor networks. 2015 Eur Confer Netwo Commun EuCNC).  https://doi.org/10.1109/EuCNC.2015.7194086. http://ieeexplore.ieee.org/document/7194086/. Accesed Feb 2018
  17. Lozano-Nieto A (2013) RFID DESIGN fundamentals and applications, vol 53. CRC press, Boca Raton, Florida.  https://doi.org/10.1017/CBO9781107415324.004. arXiv:1011.1669v3 Google Scholar
  18. Natarajan K, Prasath B, Kokila P (2016) Smart health care system using internet of things. J Network Commun Emerg Technol (JNCET) 6(3):37–42.  https://doi.org/10.15680/IJIRCCE.2016 Google Scholar
  19. Rashid N, Choudhury S, Salomaa K (2016) CARRE: cellular automaton based redundant readers elimination in RFID networks. In: 2016 IEEE international conference on communications (ICC), Kuala Lumpur, pp 1–6.  https://doi.org/10.1109/ICC.2016.7510604
  20. Rashid N, Choudhury S, Salomaa K (2018) Localized algorithms for redundant readers elimination in RFID networks. Int J Parallel, Emergent Distrib Syst.  https://doi.org/10.1080/17445760.2017.1419242 Google Scholar
  21. Vales-Alonso J, Parrado-García FJ, Alcaraz JJ (2016) OSL: an optimization-based scheduler for RFID Dense-Reader Environments. Ad Hoc Netw 37:512–525.  https://doi.org/10.1016/j.adhoc.2015.10.004 CrossRefGoogle Scholar
  22. Waldrop J, Engels DW, Sarma SE (2003) Colorwave: a MAC for RFID reader networks. IEEE Wireless Commun Netw Confer WCNC 3:1701–1704.  https://doi.org/10.1109/WCNC.2003.1200643 Google Scholar
  23. Wang YC, Liu SJ (2017) Minimum-cost deployment of adjustable readers to provide complete coverage of tags in RFID systems. J Syst Softw 134:228–241.  https://doi.org/10.1016/j.jss.2017.09.015 CrossRefGoogle Scholar
  24. Yang J, Liu F, Cao J (2017) Greedy discrete particle swarm optimization based routing protocol for cluster-based wireless sensor networks. J Ambient Intell Hum Comput.  https://doi.org/10.1007/s12652-017-0515-3 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada
  2. 2.Department of Computer ScienceLakehead UniversityThunder BayCanada
  3. 3.Department of Computer EngineeringAntalya Bilim UniversityAntalyaTurkey

Personalised recommendations