MAMbO5: a new ontology approach for modelling and managing intelligent virtual environments based on multi-agent systems

  • B. Okreša ƉurićEmail author
  • J. Rincon
  • C. Carrascosa
  • M. Schatten
  • V. Julian
Original Research


An intelligent virtual environment simulates a physical world inhabited by autonomous intelligent entities. Multi-agent systems have been usually employed to design systems of this kind. One of the key aspects in the design of intelligent virtual environments is the use of appropriate ontologies which offer a richer and more expressive representation of knowledge. In this sense, this paper proposes an ontology comprising concepts for modelling intelligent virtual environments enhanced with concepts for describing agent-based organisational features. This new ontology, called MAMbO5, is used as an input of the JaCalIVE framework, which is a toolkit for the design and implementation of agent-based intelligent virtual environments.


Multiagent systems (MAS) Large-scale multiagent systems (LSMAS) Ingelligent virtual environment (IVE) Organization Smart city Model Ontology 



  1. Ahmed Abbas H (2015) Organization of multi-agent systems: an overview. Int J Intell Inf Syst 4(3):46 (ISSN: 2328-7675) Google Scholar
  2. Amiribesheli M, Bouchachia H (2017) A tailored smart home for dementia care. J Ambient Intell Hum Comput 1:1–28 (ISSN: 1868-5137, 1868-5145) Google Scholar
  3. Amiribesheli M, Benmansour A, Bouchachia A (2015) A review of smart homes in healthcare. J Ambient Intell Hum Comput 6(4):495–517 (ISSN: 18685145) arXiv: TSMCC.2012.2189204 [10.1109]CrossRefGoogle Scholar
  4. Barella A, Ricci A, Boissier O, Carrascosa C (2012) MAM5: multi-agent model for intelligent virtual environments. In: 10th European workshop on multi-agent systems (EUMAS 2012), pp 16–30Google Scholar
  5. Bordel B (2017) Self-configuration in humanized cyber-physical systems. J Ambient Intell Hum Comput 8(4):485–496 (ISSN: 1868-5137) CrossRefGoogle Scholar
  6. Chaib A, Boussebough I, Chaoui A (2018) Adaptive service composition in an ambient environment with a multi-agent system. J Ambient Intell Hum Comput 9(2):367–380 (ISSN: 1868-5137) CrossRefGoogle Scholar
  7. Chen X (2017) A multiagent-based model for pedestrian simulation in subway stations. Simul Modell Pract Theory 71:134–148 (ISSN: 1569-190X) CrossRefGoogle Scholar
  8. Chen T, Chiu MC (2018) Smart technologies for assisting the life quality of persons in a mobile environment: a review. J Ambient Intell Hum Comput 9(2):319–327 (ISSN: 1868-5137) CrossRefGoogle Scholar
  9. Corkill DD, Lander SE (1998) Diversity in agent organizations. Obj Mag 8(4):41–47Google Scholar
  10. De Wolf T (2004) Emergence and self-organisation: a statement of similarities and differences. In: Proceedings of of the 2nd international workshop on engineering self, pp 96–110Google Scholar
  11. Dignum V (2009) The role of organization in agent systems. English. In: Dignum V (ed) Handbook of research on multi-agent systems. Hershey, IGI Global, pp 1–16 (ISBN: 9781605662565) CrossRefGoogle Scholar
  12. Fishwick PA, Miller JA (2004) Ontologies for modeling and simulation: issues and approaches. In: Simulation conference, 2004. Proceedings of the 2004 Winter, vol 1. IEEEGoogle Scholar
  13. Furfaro A (2016) Using virtual environments for the assessment of cybersecurity issues in IoT scenarios. Simul Modell Pract Theory 0:1–12Google Scholar
  14. Gabriele D, Ferretti S, Ghini V (2016) Multi-level simulation of Internet of Things on smart territories. Simul Modell Pract Theory 0:1–19Google Scholar
  15. Hadfi R, Ito T (2016) Holonic multiagent simulation of complex adaptive systems. In: Javier B (Ed) Highlights of practical applications of scalable multi-agent systems. The PAAMS collection: international workshops of PAAMS 2016, Sevilla, Spain, June 1–3, 2016. Proceedings. Springer, Cham, pp 137–147 (ISBN: 978-3-319-39387-2) Google Scholar
  16. Hofmann M, Palii J, Mihelcic G (2011) Epistemic and normative aspects of ontologies in modelling and simulation. J Simul 5(3):135–146CrossRefGoogle Scholar
  17. Hui TKL, Sherratt RS (2017) Towards disappearing user interfaces for ubiquitous computing: human enhancement from sixth sense to super senses. J Ambient Intell Hum Comput 8(3):449–465 (ISSN: 1868-5137, 1868-5145) CrossRefGoogle Scholar
  18. Kim S, Lee I (2018) IoT device security based on proxy re-encryption. J Ambient Intell Hum Comput 9(4):1267–1273 (ISSN: 1868-5137, 1868-5145) CrossRefGoogle Scholar
  19. Ko E, Kim T, Kim H (2018) Management platform of threats information in IoT environment. J Ambient Intell Hum Comput 9(4):1167–1176 (ISSN: 1868-5137, 1868-5145) CrossRefGoogle Scholar
  20. Liu Y, Xu C, Zhan Y, Liu Z, Guan J, Zhang H (2017) Incentive mechanism for computation offloading using edge computing: a stackelberg game approach. Comput Netw 129:399–409CrossRefGoogle Scholar
  21. Liu Y, Bashar AAE, Wu B, Wu H (2018a) Delay-constrained profit maximization for data deposition in mobile opportunistic device-to-device networks. In: 2018 IEEE 19th international symposium on” a world of wireless, mobile and multimedia networks (WoWMoM), IEEE, pp 1–10Google Scholar
  22. Liu Y, et al (2018b) Delay-constrained utility maximization for video ads push in mobile opportunistic D2D networks. IEEE Internet Things JGoogle Scholar
  23. Luck M, Aylett R (2000) Applying artificial intelligence to virtual reality: intelligent virtual environments. Appl Artif Intell 14(1):3–32CrossRefGoogle Scholar
  24. Marcon E (2017) A multi-agent system based on reactive decision rules for solving the caregiver routing problem in home health care. Simul Modell Pract Theory 74:134–151 (ISSN: 1569-190X) CrossRefGoogle Scholar
  25. Mulero R (2018) Towards ambient assisted cities using linked data and data analysis. J Ambient Intell Hum Comput 9(5):1573–1591 (ISSN: 1868-5137, 1868-5145) CrossRefGoogle Scholar
  26. Okreša Đ B, Schatten M (2016) Defining ontology combining concepts of massive multi-player online role playing games and organization of large-scale multi-agent systems. In: Opatija HR (ed) 39th international convention on information and communication technology, electronics and microelectronics (MIPRO). IEEE, pp 1330–1335 (ISBN: 978-953-233-086-1) Google Scholar
  27. Ricci A, Viroli M, Omicini A (2007) Give agents their artifacts: the A&A approach for engineering working environments in MAS. In: Proceedings of the 6th international joint conference on autonomous agents and multiagent systems, p 150Google Scholar
  28. Rincon JA, Carrascosa C, Garcia E (2014) Developing intelligent virtual environments using MAM5 meta-model. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 8473 LNAI, pp 379–382 (ISSN: 16113349) CrossRefGoogle Scholar
  29. Rincon J (2016) Extending MAM5 meta-model and JaCalIV E framework to integrate smart devices from real environments. PLoS One 11:e0149665. CrossRefGoogle Scholar
  30. Rincon J, Garcia E, Julian V, Carrascosa C (2018) The jacalive framework for mas in IVE: a case study in evolving modular robotics. Neurocomputing 275:608–617CrossRefGoogle Scholar
  31. Rodriguez S (2011) Holonic multi-agent systems. In: Di Marzo SG, Gleizes MP, Karageorgos A (eds) Natural computing series, natural computing series, vol 37. Springer, Heidelberg, pp 251–279 (ISBN: 978-3-642-17347-9) Google Scholar
  32. Samara A, et al. (2017) Affective state detection via facial expression analysis within a human–computer interaction context. J Ambient Intell Hum Comput (ISSN: 1868-5137, 1868-5145) Google Scholar
  33. Schatten M (2014) Organizational architectures for large-scale multi-agent systems’ development: an initial ontology. In: Sigeru O, et al (Ed) Advances in intelligent systems and computing, vol 290, pp 261–268Google Scholar
  34. Schatten M (2014) Towards a formal conceptualization of organizational design techniques for large scale multi agent systems. Procedia Technol 15:577–586 (ISSN: 22120173) CrossRefGoogle Scholar
  35. Sharpanskykh A, Treur J (2012) An ambient agent architecture exploiting automated cognitive analysis. J Ambient Intell Hum Comput 3(3):219–237 (ISSN: 1868-5137, 1868-5145) CrossRefGoogle Scholar
  36. Weyns D, Haesevoets R, Helleboogh A (2010) The MACODO organization model for context-driven dynamic agent organizations. ACM Trans Auton Adapt Syst 5(4):1–29 (ISSN: 15564665) CrossRefGoogle Scholar
  37. Yang G, Kifer M, Zhao C (2003) Flora-2: a rule-based knowledge representation and inference infrastructure for the semantic web. In: Robert M, Zahir T, Douglas CS (Ed) On the move to meaningful internet systems 2003: CoopIS, DOA, and ODBASE: OTM confederated international conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3–7, 2003. Proceedings. Springer, Berlin, pp 671–688 (ISBN: 978-3-540-39964-3) Google Scholar
  38. Zehe D, et al (2015) SEMSim cloud service: large-scale urban systems simulation in the cloud. In: 58, pp 157–171Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory, Faculty of Organization and InformaticsUniversity of ZagrebVarazdinCroatia
  2. 2.Departamento Sistemas Informáticos y ComputaciónUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations