Remote sensing and landsat image enhancement using multiobjective PSO based local detail enhancement

  • Rahul MalikEmail author
  • Renu Dhir
  • S. K. Mittal
Original Research


In remote sensing images, the common artifacts caused by existing contrast enhancement methods, need to be minimized because pieces of important information are widespread throughout the image in the sense of both spatial locations and intensity levels. In this regard enhancement techniques not merely restore the contrast but also decrease intensity distortion of satellite images. To achieve this goal, in this paper, the image is first enhanced by applying sigmoid function. Then multiobjective PSO method is adopted to maximize the information content, carried in the image with a continuous intensity transform function while preserving the image intensity by using the gamma-correction approach. The proposed technique is implemented using MATLAB and tested over Landsat satellite images provided by USGS. The qualitative results have clearly shown that the proposed image enhancement technique can preserve the significant detail of the original image.


Satellite imaging Image enhancement Particle swarm optimization Local detail enhancement 



  1. Agaian SS, Silver B, Panetta KA (2007) Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans Image Process 16(3):741–758MathSciNetCrossRefGoogle Scholar
  2. Arici T, Dikbas S, Altunbasak Y (2009) A histogram modification framework and its application for image contrast enhancement. IEEE Trans Image Process 18(9):1921–1935MathSciNetCrossRefGoogle Scholar
  3. Arriaga-Garacia EF, Sanchez-Yanez RE, Garcia-Hernendez MG (2014) Image enhancement using bi-histogram equalization with adaptive sigmoid function. In: IEEE conference, CONIELECOMP, 26–28 FebGoogle Scholar
  4. Celik T (2012) Two-dimensional histogram equalization and contrast enhancement. Pattern Recognit 45(10):3810–3824CrossRefGoogle Scholar
  5. Chen S, Ramli A (2003) Contrast enhancement using recursive mean separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301–1309CrossRefGoogle Scholar
  6. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095MathSciNetCrossRefGoogle Scholar
  7. Demirel H, Anbarjafari G, Jahromi MNS (2008) Image equalization based on singular value decomposition. In: IEEE 23rd ISCIS, pp 1–5Google Scholar
  8. Demirel H, Ozcinar C, Anbarjafari G (2010) Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geosci Remote Sens Lett 7(2):333–337CrossRefGoogle Scholar
  9. Fu X, Wang J, Zeng D, Huang Y, Ding X (2015) Remote sensing image enhancement using regularized-histogram equalization and DCT. IEEE Geosci Remote Sens Lett 12(11):2301–2305CrossRefGoogle Scholar
  10. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  11. Huang SC, Cheng FC, Chiu YS (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041MathSciNetCrossRefGoogle Scholar
  12. Ibrahim H, Kong NSP (2007) Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(4):1752–1758CrossRefGoogle Scholar
  13. Jang JH, Kim SD, Ra JB (2011) Enhancement of optical remote sensing images by subband-decomposed multiscaleretinex with hybrid intensity transfer function. IEEE Geosci Remote Sens Lett 8(5):983–987CrossRefGoogle Scholar
  14. Kwok NM, Ha OP, Liu D, Fang G (2009) Contrast enhancement and intensity preservation for gray-level images using multiobjective particle swarm optimization. IEEE Trans Autom Sci Eng 6(1):145–155CrossRefGoogle Scholar
  15. Lee E, Kim S, Kang W, Seo D, Paik J (2013) Contrast enhancement using dominant brightness level analysis and adaptive intensity transformation for remote sensing images. IEEE Geosci Remote Sens Lett 10(1):62–66CrossRefGoogle Scholar
  16. Lidong H, Wei Z, Jun W, Zebin S (2015) Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Proc 9(10):908–915CrossRefGoogle Scholar
  17. Oswald C, Sivaselvan B (2018) An optimal text compression algorithm based on frequent pattern mining. J Ambient Intell Hum Comput 9:803–822CrossRefGoogle Scholar
  18. Ramalingam SP, Chandra Mouli PVSSR (2018) Modified dimensionality reduced local directional pattern for facial analysis. J Ambient Intell Hum Comput 9:725–737CrossRefGoogle Scholar
  19. Remote Sensing and Landsat, [Available: Online]:
  20. Starck JL, Murtagh F, Candès EJ, Donoho DL (2003) Gray and color image contrast enhancement by the curvelet transform. IEEE Trans Image Process 12(6):706–717MathSciNetCrossRefGoogle Scholar
  21. Venkatalakshmi K, Shalinie SM (2010) A customized particle swarm optimization algorithm for image enhancement. In: IEEE conference, ICCCCTGoogle Scholar
  22. Yang Y, Su Z, Sun L (2010) Medical image enhancement algorithm based on wavelet transform. Electron Lett 46(2):120–121CrossRefGoogle Scholar
  23. Zhang G, Chen Q, Sun Q (2014) Illumination normalization among multiple remote-sensing images. IEEE Geosci Remote Sens Lett 11(9):1470–1474CrossRefGoogle Scholar
  24. Zimmerman JB, Pizer SM, Staab EV, Perry JR, Mccartney W, And Brenton BC (1988) An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans Med Imaging 7(4):304,312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lovely Professional UniversityPhagwaraIndia
  2. 2.Dr. B. R. Ambedkar NIT JalandharJalandharIndia
  3. 3.CSIO-CSIRChandigarhIndia

Personalised recommendations