Advertisement

Solving the green-fuzzy vehicle routing problem using a revised hybrid intelligent algorithm

  • Ruonan Wang
  • Jian ZhouEmail author
  • Xiajie Yi
  • Athanasios A. Pantelous
Original Research

Abstract

Green logistics is an emerging area in supply chain management, which has been shown to have tremendous impacts in recent years to face the serious climate changes risks. In this paper, the fuel consumption and fuzzy travel time have been delineated in developing and solving the green-fuzzy vehicle routing problem as an extension of the celebrated VRP in which routes are performed to reduce the total expenditure. Different from the existing solution manners, we transform the original fuzzy chance constrained programming model into an equivalent deterministic model, and then revise the original hybrid intelligent algorithm by replacing the embedded fuzzy simulation with analytical function calculation. Finally, a comparative study with the corresponding literature is performed, which shows that the revised algorithm can not only improve the solution accuracy but also shorten the runtime greatly.

Keywords

Vehicle routing problem Fuzzy travel time Fuzzy simulation Green logistics Genetic algorithm 

Notes

Acknowledgements

The authors would like to acknowledge also the gracious support of this work by “Shuguang Program” from Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Grant no. 15SG36), and the Recruitment Program of High-end Foreign Experts (Grant no. GDW20163100009).

References

  1. Allahviranloo M, Chow JYJ, Recker WW (2014) Selective vehicle routing problems under uncertainty without recourse. Transp Res E 62(2):68–88.  https://doi.org/10.1016/j.tre.2013.12.004 CrossRefGoogle Scholar
  2. Alshamrani A, Mathur K, Ballou RH (2007) Reverse logistics: simultaneous design of delivery routes and returns strategies. Comput Oper Res 34(2):595–619.  https://doi.org/10.1016/j.cor.2005.03.015 CrossRefzbMATHGoogle Scholar
  3. Bektas T, Laporte G (2011) The pollution-routing problem. Transp Res B 45(8):1232–1250.  https://doi.org/10.1016/j.trb.2011.02.004 CrossRefGoogle Scholar
  4. Cao E, Lai M (2010) The open vehicle routing problem with fuzzy demands. Expert Syst Appl 37(3):2405–2411.  https://doi.org/10.1016/j.eswa.2009.07.021 CrossRefGoogle Scholar
  5. Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12(4):568–581.  https://doi.org/10.1287/opre.12.4.568 CrossRefGoogle Scholar
  6. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6(1):80–91.  https://doi.org/10.1287/mnsc.6.1.80 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Dror M, Laporte G, Trudeau P (1994) Vehicle routing with split deliveries. Discrete Appl Math 50(3):239–254.  https://doi.org/10.1016/0166-218X(92)00172-I MathSciNetCrossRefzbMATHGoogle Scholar
  8. Du J, Li X, Yu L, Dan R, Zhou J (2017) Multi-depot vehicle routing problem for hazardous materials transportation: a fuzzy bilevel programming. Inf Sci 399:201–218.  https://doi.org/10.1016/j.ins.2017.02.011 CrossRefGoogle Scholar
  9. Gaur DR, Mudgal A, Singh RR (2013) Routing vehicles to minimize fuel consumption. Oper Res Lett 41(6):576–580.  https://doi.org/10.1016/j.orl.2013.07.007 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Gu Y, Zhou J, Yu L, Yi X (2017) On the simulation method for the credibility and critical value of fuzzy variables. Technical ReportGoogle Scholar
  11. Koc C, Karaoglan I (2016) The green vehicle routing problem: a heuristic based exact solution approach. Appl Soft Comput 39:154–164.  https://doi.org/10.1016/j.asoc.2015.10.064 CrossRefGoogle Scholar
  12. Kuo RJ, Wibowo BS, Zulvia FE (2016) Application of a fuzzy ant colony system to solve the dynamic vehicle routing problem with uncertain service time. Appl Math Model 40(23):9990–10001.  https://doi.org/10.1016/j.apm.2016.06.025 MathSciNetCrossRefGoogle Scholar
  13. Lin C, Choy KL, Ho GTS, Lam HY (2014) Survey of green vehicle routing problem: past and future trends. Expert Syst Appl 41(4):1118–1138.  https://doi.org/10.1016/j.eswa.2013.07.107 CrossRefGoogle Scholar
  14. Liu B (2004) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, BerlinCrossRefGoogle Scholar
  15. McKinnon AC, Piecyk MI (2009) Measurement of CO\(_2\) emissions from road freight transport: a review of UK experience. Energy Policy 37(10):3733–3742.  https://doi.org/10.1016/j.enpol.2009.07.007 CrossRefGoogle Scholar
  16. Montoya A, Gueret C, Mendoza JE, Villegas JG (2016) A multi-space sampling heuristic for the green vehicle routing problem. Transp Res C 70:113–128.  https://doi.org/10.1016/j.trc.2015.09.009 CrossRefGoogle Scholar
  17. Montoya A, Gueret C, Mendoza JE, Villegas JG (2017) The electric vehicle routing problem with nonlinear charging function. Transp Res B 103:87–110.  https://doi.org/10.1016/j.trb.2017.02.004 CrossRefGoogle Scholar
  18. Nadizadeh A, Nasab HH (2014) Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic algorithm. Eur J Oper Res 238(2):458–470.  https://doi.org/10.1016/j.ejor.2014.04.012 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Nguyen VA, Jiang J, Ng KM, Teo KM (2016) Satisficing measure approach for vehicle routing problem with time windows under uncertainty. Eur J Oper Res 248(2):404–414.  https://doi.org/10.1016/j.ejor.2015.07.041 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Prive J, Renaud J, Boctor F, Laporte G (2006) Solving a vehicle-routing problem arising in soft-drink distribution. J Oper Res Soc 57(9):1045–1052.  https://doi.org/10.1057/palgrave.jors.2602087 CrossRefzbMATHGoogle Scholar
  21. Samanlioglu F (2013) A multi-objective mathematical model for the industrial hazardous waste location-routing problem. Eur J Oper Res 226(2):332–340.  https://doi.org/10.1016/j.ejor.2012.11.019 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Sambracos E, Paravantis JA, Tarantilis CD, Kiranoudis CT (2004) Dispatching of small containers via coastal freight liners: the case of the Aegean Sea. Eur J Oper Res 152:365–381.  https://doi.org/10.1016/S0377-2217(03)00030-4 CrossRefzbMATHGoogle Scholar
  23. Shi Y, Boudouh T, Grunder O (2017) A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand. Expert Syst Appl 72:160–176.  https://doi.org/10.1016/j.eswa.2016.12.013 CrossRefGoogle Scholar
  24. Tang J, Pan Z, Fung RYK, Lau H (2009) Vehicle routing problem with fuzzy time windows. Fuzzy Set Syst 160(5):683–695.  https://doi.org/10.1016/j.fss.2008.09.016 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Teodorovic D, Pavkovic G (1996) The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain. Fuzzy Set Syst 82(3):307–317.  https://doi.org/10.1016/0165-0114(95)00276-6 MathSciNetCrossRefGoogle Scholar
  26. Tillman FA (1969) The multiple terminal delivery problem with probabilistic demands. Transp Sci 3(3):192–204.  https://doi.org/10.1287/trsc.3.3.192 CrossRefGoogle Scholar
  27. Wang Y, Ma X, Xu M, Wang Y, Liu Y (2015) Vehicle routing problem based on a fuzzy customer clustering approach for logistics network optimization. J Intell Fuzzy Syst 29(4):1427–1442.  https://doi.org/10.3233/IFS-151578 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Xiao Y, Zhao Q, Kaku I, Xu Y (2012) Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput Oper Res 39(7):1419–1431.  https://doi.org/10.1016/j.cor.2011.08.013 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Yalcin GD, Erginel N (2015) Fuzzy multi-objective programming algorithm for vehicle routing problems with backhauls. Expert Syst Appl 42(13):5632–5644.  https://doi.org/10.1016/j.eswa.2015.02.060 CrossRefGoogle Scholar
  30. Zadeh LA (1979) A theory of approximate reasoning. Mach Intell 9(9):149–194MathSciNetGoogle Scholar
  31. Zheng Y, Liu B (2006) Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm. Appl Math Comput 176(2):673–683.  https://doi.org/10.1016/j.amc.2005.10.013 MathSciNetzbMATHGoogle Scholar
  32. Zhong S, Pantelous AA, Beer M, Zhou J (2018) Constrained non-linear multi-objective optimization of preventive maintenance scheduling for offshore wind farms. Mech Syst Signal Process 104:347–369.  https://doi.org/10.1016/j.ymssp.2017.10.035 CrossRefGoogle Scholar
  33. Zhou J, Yang F, Wang K (2016) Fuzzy arithmetic on LR fuzzy numbers with applications to fuzzy programming. J Intell Fuzzy Syst 30(1):71–87.  https://doi.org/10.3233/IFS-151712 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ruonan Wang
    • 1
  • Jian Zhou
    • 1
    Email author
  • Xiajie Yi
    • 2
  • Athanasios A. Pantelous
    • 3
  1. 1.School of ManagementShanghai UniversityShanghaiChina
  2. 2.Faculty of Economics and Business AdministrationGhent UniversityGhentBelgium
  3. 3.Department of Econometrics and Business StatisticsMonash UniversityVictoriaAustralia

Personalised recommendations