A multipath QoS multicast routing protocol based on link stability and route reliability in mobile ad-hoc networks

  • Mina Ghafouri vaighan
  • Mohammad Ali Jabraeil JamaliEmail author
Original Research


Recently, the use of real-time multimedia applications has attracted the attention of mobile ad hoc network users. These applications support service quality. The characteristics of mobile ad hoc networks such as lack of central coordinator, mobility of hosts, dynamic changes in network topology and the limitation of access to resources have caused remarkable challenges in providing high quality services for mobile ad hoc networks. Bandwidth limitation of wireless nodes and the lack of adequate multicast trees are regarded as the main challenges for quality of service-based multicast routing. In this paper, an attempt was made to propose a more stable and more reliable in multi-path quality of service multicast routing protocol (SR-MQMR) for mobile ad-hoc networks. In the proposed method, considering the requested bandwidth, the researchers first used the signal strength of nodes to select the most stable nodes. Then, using the two parameters of route expiration time and the number of hops, we selected a route which had low delay and high stability. The results of simulations conducted in the present study indicated that the SR-MQMR protocol used less time slots than the MQMR protocol in the routing process which resulted in an increase in success ratio. Furthermore, the production of stable routes led to a significant enhancement of reliability. Since the reduction of route request packet exchange decreased overhead in the proposed method, the degree of consumed bandwidth decreased which led to an increase in network lifetime.


Mobile ad hoc networks Multi-path QoS multicast routing protocol Time slot Signal strength Reliability Route stability 


  1. Badis H, Agha KA (2005) QOLSR, QoS routing for ad hoc wireless networks using OLSR. Eur Trans Telecommun 16(5):427–442. doi: 10.1002/ett.1067 CrossRefGoogle Scholar
  2. Barolli L, Koyama A, Shiratori N (2003) A QoS routing method for ad-hoc networks based on genetic algorithm. In: Proceedings—international workshop on database and expert systems applications, DEXA (vol 2003–January). doi: 10.1109/DEXA.2003.1232019
  3. Bashandy AR, Chong E. K. P., Ghafoor A (2005) Generalized quality-of-service routing with resource allocation. IEEE J Sel Areas Commun 23(2):450–463.  10.1109/JSAC.2004.839423 CrossRefGoogle Scholar
  4. Biswas J, Barai M, Nandy SK (2004) Efficient hybrid multicast routing protocol for ad-hoc wireless networks. In: 29th Annual IEEE International Conference on Local Computer Networks, pp 180–187. doi: 10.1109/LCN.2004.47
  5. Canales M, Gállego JR, Hernández-Solana Á, Valdovinos A (2009) QoS provision in mobile ad hoc networks with an adaptive cross-layer architecture. Wirel Netw 15(8):1165–1187. doi: 10.1007/s11276-008-0109-2 CrossRefGoogle Scholar
  6. Chen L, Heinzelman WB (2005) QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE J Sel Areas Commun 23(3):561–572. doi: 10.1109/JSAC.2004.842560 CrossRefGoogle Scholar
  7. Chen L, Heinzelman WB (2007) A survey of routing protocols that support QoS in mobile ad hoc networks. IEEE Netw 21(6):30–38. doi: 10.1109/MNET.2007.4395108 CrossRefGoogle Scholar
  8. Chen Y-S, Tseng Y-C, Sheu J-P, Kuo P-H (2004) An on-demand, link-state, multi-path QoS routing in a wireless mobile ad-hoc network. Comput Commun 27(1):27–40. doi: 10.1016/S0140-3664(03)00176-2 CrossRefGoogle Scholar
  9. Chen Y-S, Lin T-H, Lin Y-W (2007) A hexagonal-tree TDMA-based QoS multicasting protocol for wireless mobile ad hoc networks. Telecommun Syst 35(1):1–20. doi: 10.1007/s11235-007-9037-1 MathSciNetCrossRefGoogle Scholar
  10. Csiszár V, Móri TF (2000) A Bienayme–chebyshev inequality for scale mixtures of the multivariate normal distribution. Math Inequal Appl 12: 1–5MathSciNetGoogle Scholar
  11. Dhillon H, Ngo HQ (2005) CQMP: a mesh-based multicast routing protocol with consolidated query packets. IEEE Wirel Commun Netw Conf 4:2168–2174. doi: 10.1109/WCNC.2005.1424853 Google Scholar
  12. Ghouti L, Sheltami TR, Alutaibi KS (2013) Mobility prediction in mobile Ad Hoc networks using extreme learning machines. Procedia Comput Sci 19(Ant):305–312. doi: 10.1016/j.procs.2013.06.043 CrossRefGoogle Scholar
  13. Hasan MZ, Al-Turjman F, Al-Rizzo H (2017) Optimized multi-constrained quality-of-service multipath routing approach for multimedia sensor networks. IEEE Sens J 17(7):2298–2309. doi: 10.1109/JSEN.2017.2665499 CrossRefGoogle Scholar
  14. Kim K-I, Kim S-H (2006) DREAM: density aware overlay multicast forwarding in mobile ad hoc networks. Wirel Pers Commun. doi: 10.1007/s11277-006-9081-2 Google Scholar
  15. Layuan L, Chunlin L (2005) A QoS multicast routing protocol for dynamic group topology. Inf Sci. doi: 10.1016/j.ins.2004.02.008 MathSciNetzbMATHGoogle Scholar
  16. Lee S, Su W, Gerla M (2002) On-demand multicast routing protocol in multihop wireless mobile networks. Mob Netw Appl:441–453.
  17. Li M, Lukyanenko A, Ou Z, Ylä-Jääski A, Tarkoma S, Coudron M, Secci S (2016) Multipath transmission for the internet: a survey. IEEE Commun Surv Tutor 18(4):2887–2925. doi: 10.1109/COMST.2016.2586112 CrossRefGoogle Scholar
  18. Liao W-H, Tseng Y-C, Shih K-P (2002) A TDMA-based bandwidth reservation protocol for QoS routing in a wireless mobile ad hoc network. In: IEEE International Conference on Communications, vol 5Google Scholar
  19. Lin CR (2001) On-demand QoS routing in multihop mobile networks. In: Proceedings—IEEE INFOCOM, vol 3Google Scholar
  20. Lin CR, Liu JS (1999) QoS routing in ad hoc wireless networks. IEEE J Sel Areas Commun 17(8):1426–1438. doi: 10.1109/49.779924 CrossRefGoogle Scholar
  21. Lynn GH, Znati TF (2001) RoMR: a robust multicast routing protocol for ad-hoc networks. In: Conference on local computer networks. doi: 10.1109/LCN.2001.990795
  22. Malik A, Qadir J, Ahmad B, Yau A et al (2015) QoS in IEEE 802.11-based wireless networks: a contemporary review. J Netw Comput Appl. doi: 10.1016/j.jnca.2015.04.016 Google Scholar
  23. Mao G, Fidan B, Anderson BDO (2007) Wireless sensor network localization techniques. Comput Netw 51(10):2529–2553. doi: 10.1016/j.comnet.2006.11.018 CrossRefzbMATHGoogle Scholar
  24. Moussaoui A, Boukeream A (2015) A survey of routing protocols based on link-stability in mobile ad hoc networks. J Netw Comput Appl. doi: 10.1016/j.jnca.2014.09.007 Google Scholar
  25. Moussaoui A, Semchedine F, Boukerram A (2013) A link-state QoS routing protocol based on link stability for Mobile Ad hoc Networks. J Netw Comput Appl 39:117–125. doi: 10.1016/j.jnca.2013.05.014 CrossRefGoogle Scholar
  26. Namdev A, Mishra A (2016) Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. In: 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp 1–6. doi: 10.1109/SCEECS.2016.7509297
  27. Namdev A, Mishra A, Bashandy AR, Chong E. K. P., Ghafoor A, Singal G et al (2005) QoS provision in mobile ad hoc networks with an adaptive cross-layer architecture. J Netw Comput Appl 17(1):1–20. doi: 10.1007/s11235-007-9037-1 Google Scholar
  28. Park S, Park D (2004) Adaptive core multicast routing protocol. Wirel Netw 10(1):53–60. doi: 10.1023/A:1026240813835 MathSciNetCrossRefGoogle Scholar
  29. Perkins CEC, Royer EM (1999) Ad-hoc on-demand distance vector routing. In: Proceedings WMCSA’99. Second IEEE workshop on mobile computing systems and applications, pp 90–100. doi: 10.1109/MCSA.1999.749281
  30. Royer EM, Perkins CE (1999) Multicast operation of the ad-hoc on-demand distance vector routing protocol. In: Proceedings of the 5th {ACM/IEEE} International Conference on Mobile Computing and Networking {(MobiCom)}, pp 207–218. doi: 10.1145/313451.313538
  31. Santhi G, Nachiappan A (2010) A survey of QOS routing protocols for mobile ad hoc networks. Int J Comput Sci Inf Technol 2(4):125–136Google Scholar
  32. Sarma N, Nandi S (2010) Route stability based QoS routing in mobile Ad Hoc networks. Wireless Pers Commun. doi: 10.1007/s11277-009-9718-z Google Scholar
  33. Shih K-P, Chang C-Y, Chen Y-D, Chuang T-H (2006) Dynamic bandwidth allocation for QoS routing on TDMA-based mobile ad hoc networks. Comput Commun. doi: 10.1016/j.comcom.2005.10.009 Google Scholar
  34. Singal G, Laxmi V, Gaur MS, Lal C (2014) LSMRP: Link stability based multicast routing protocol in MANETs. In: 2014 7th International Conference on Contemporary Computing, IC3 2014, pp 254–259. doi: 10.1109/IC3.2014.6897182
  35. Sivakumar R, Sinha P, Bharghavan V (1999) CEDAR: a core-extraction distributed ad hoc routing algorithm. IEEE J Select Areas Commun. doi: 10.1109/49.779926 Google Scholar
  36. Sun E, Wang C, Tian F (2014) A survey on multipath routing protocols in wireless multimedia sensor networks. Telkomnika Indonesian J Elect Eng 12(9):6978–6983. doi: 10.1016/j.procs.2016.03.077 Google Scholar
  37. Wang N-C, Lee C-Y (2009) A reliable QoS aware routing protocol with slot assignment for mobile ad hoc networks. J Netw Comput Appl. doi: 10.1016/j.jnca.2009.06.001 Google Scholar
  38. Wang N-C, Lee C-Y (2012) A multi-path QoS multicast routing protocol with slot assignment for mobile ad hoc networks. Inf Sci. doi: 10.1016/j.ins.2012.04.040 Google Scholar
  39. Xu W, Daneshmand LW (2015) A data privacy protective mechanism for WBAN. Wirel Commun Mob Comput. doi: 10.1002/wcm Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Computer Engineering, Shabestar BranchIslamic Azad UniversityShabestarIran

Personalised recommendations