Online human movement classification using wrist-worn wireless sensors

  • Peter SarcevicEmail author
  • Zoltan Kincses
  • Szilveszter Pletl
Original Research


The monitoring and analysis of human motion can provide valuable information for various applications. This work gives a comprehensive overview about existing methods, and a prototype system is also presented, capable of detecting different human arm and body movements using wrist-mounted wireless sensors. The wireless units are equipped with three tri-axial sensors, an accelerometer, a gyroscope, and a magnetometer. Data acquisition was done for multiple activities with the help of the used prototype system. A new online classification algorithm was developed, which enables easy implementation on the used hardware. To explore the optimal configuration, multiple datasets were tested using different feature extraction approaches, sampling frequencies, processing window widths, and used sensor combinations. The applied datasets were constructed using data collected with the help of multiple subjects. Results show that nearly 100% recognition rate can be achieved on training data, while almost 90% can be reached on validation data, which were not utilized during the training of the classifiers. This shows high correlation in the movements of different persons, since the training and validation datasets were constructed of data from different subjects.


Activity recognition Wearable sensors Feature extraction Time-domain analysis Dimension reduction 



The publication is supported by the European Union and co-funded by the European Social Fund. Project title: “Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences” Project number: TÁMOP-4.2.2.A-11/1/KONV-2012-0073.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aiello F, Bellifemine FL, Fortino G, Galzarano S, Gravina R (2011) An agent-based signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks. Eng Appl Artif Intell 24:1147–1161. doi:  10.1016/j.engappai.2011.06.007 CrossRefGoogle Scholar
  2. Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: A survey. Comput Netw 54:2688–2710. doi:  10.1016/j.comnet.2010.05.003 CrossRefGoogle Scholar
  3. Altun K, Barshan B, Tuncel O (2010) Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognit 43:3605–3620. doi:  10.1016/j.patcog.2010.04.019 CrossRefzbMATHGoogle Scholar
  4. Attal F, Dedabrishvili M, Mohammed S, Chamroukhi F, Oukhellou L, Amirat Y (2015) Physical human activity recognition using wearable sensors. Sens 15:31314–31338. doi:  10.3390/s151229858 CrossRefGoogle Scholar
  5. Bao L, Intille S (2004) Activity recognition from user-annotated acceleration data. Lect Notes Comput Sci 3001:1–17. doi:  10.1007/978-3-540-24646-6_1 CrossRefGoogle Scholar
  6. Chernbumroong S, Cang S, Yu H (2014) A practical multi-sensor activity recognition system for home-based care. Decis Support Syst 66:61–70. doi:  10.1016/j.dss.2014.06.005 CrossRefGoogle Scholar
  7. Cohn G, Gupta S, Lee TJ, Morris D, Smith J, Reynolds M, Tan D, Patel S (2012) An ultra-low-power human body motion sensor using static electric field sensing. In: Proceedings of the ACM Conference on Ubiquitous Computing (UbiComp), pp 99–102Google Scholar
  8. Cornacchia M, Ozcan K, Zheng Y, Velipasalar S (2017) A survey on activity detection and classification using wearable sensors. IEEE Sens J 17:386–403. doi:  10.1109/JSEN.2016.2628346 CrossRefGoogle Scholar
  9. Field M, Stirling D, Pan Z, Ros M, Naghdy F (2015) Recognizing human motions through mixture modeling of inertial data. Pattern Recognit 48:2394–2406. doi:  10.1016/j.patcog.2015.03.004 CrossRefGoogle Scholar
  10. Fuentes D, Gonzalez-Abril L, Angulo C, Ortega JA (2012) Online motion recognition using an accelerometer in a mobile device. Expert Syst Appl 39:2461–2465. doi:  10.1016/j.eswa.2011.08.098 CrossRefGoogle Scholar
  11. Ghasemzadeh H, Ostadabbas S, Guenterberg E, Pantelopoulos A (2013) Wireless medical-embedded systems: A review of signal-processing techniques for classification. IEEE Sens J 13:423–437. doi:  10.1109/JSEN.2012.2222572 CrossRefGoogle Scholar
  12. Gonzalez S, Sedano J, Villar J, Corchado E, Herrero A, Baruque B (2015) Features and models for human activity recognition. Neurocomputing 167:52–60.  10.1016/j.neucom.2015.01.082 CrossRefGoogle Scholar
  13. Gravina R, Alinia P, Ghasemzadeh H, Fortino G (2017) Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf Fusion 35:68–80. doi:  10.1016/j.inffus.2016.09.005 CrossRefGoogle Scholar
  14. Gu Q, Li Z, Han J (2011) Linear discriminant dimensionality reduction. Lect Notes Comput Sci 6911:549–564. doi:  10.1007/978-3-642-23780-5_45 CrossRefGoogle Scholar
  15. Guo Y, He W, Gao C (2012) Human activity recognition by fusing multiple sensor nodes in the wearable sensor systems. J Mech Med Biol. doi:  10.1142/S0219519412500844 Google Scholar
  16. Korpela J, Maekawa T, Eberle J, Chakraborty D, Aberer K (2016) Tree-structured classifier for acceleration-based activity and gesture recognition on smartwatches. In: IEEE International Conference on Pervasive Computing and Communications WorkshopsGoogle Scholar
  17. Lee Y-S, Cho S-B (2016) Layered hidden Markov models to recognize activity with built-in sensors on Android smartphone. Pattern Anal Applic 19:1181–1193. doi:  10.1007/s10044-016-0549-8 MathSciNetCrossRefGoogle Scholar
  18. Lee MW, Khan AM, Kim TS (2011) A single tri-axial accelerometer-based real-time personal life log system capable of human activity recognition and exercise information generation. Pers Ubiquitous Comput 15:887–898. doi:  10.1007/s00779-011-0403-3 CrossRefGoogle Scholar
  19. Li C, Lin M, Yang L, Ding C (2014) Integrating the enriched feature with machine learning algorithms for human movement and fall detection. J Supercomput 67:854–865. doi:  10.1007/s11227-013-1056-y CrossRefGoogle Scholar
  20. Maekawa T, Kishino Y, Sakurai Y, Suyama T (2013) Activity recognition with hand-worn magnetic sensors. Pers Ubiquitous Comput 17:1085–1094. doi:  10.1007/s00779-012-0556-8 CrossRefGoogle Scholar
  21. Martin H, Bernardos A, Iglesias J, Casar J (2013) Activity logging using lightweight classification techniques in mobile devices. Pers Ubiquitous Comput 17:675–695. doi:  10.1007/s00779-012-0515-4 CrossRefGoogle Scholar
  22. Martinez A, Kak A (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23:228–233. doi:  10.1109/34.908974 CrossRefGoogle Scholar
  23. Mitchell T (1997) Machine learning. McGraw-Hill, New YorkzbMATHGoogle Scholar
  24. Phinyomark A, Phukpattaranont P, Limsakul C (2012) Feature reduction and selection for EMG signal classification. Expert Syst Appl 39:7420–7431. doi:  10.1016/j.eswa.2012.01.102 CrossRefGoogle Scholar
  25. Preece S, Goulermas JY, Kenney L, Howard D (2009) A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng 56:871–879. doi:  10.1109/TBME.2008.2006190 CrossRefGoogle Scholar
  26. Sarcevic P, Pletl S, Kincses Z (2014) Evolutionary algorithm based 9DOF sensor board calibration. In: IEEE International Symposium on Intelligent Systems and Informatics (SISY), pp 187–192Google Scholar
  27. Sarcevic P, Kincses Z, Pletl S (2015a) Comparison of different classifiers in movement recognition using WSN-based wrist-mounted sensors. IEEE Sensors Applications Symposium (SAS), pp 1–6Google Scholar
  28. Sarcevic P, Schaffer L, Kincses Z, Pletl S (2015b) Hierarchical-distributed approach to movement classification using wrist-mounted wireless inertial and magnetic sensors. Infocommunications J 7:33–41Google Scholar
  29. Suarez I, Jahn A, Anderson C, David K (2015) Improved activity recognition by using enriched acceleration data. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), pp 1011–1015Google Scholar
  30. Ugolotti R, Sassi F, Mordonini M, Cagnoni S (2013) Multi-sensor system for detection and classification of human activities. J Ambient Intell Human Comput 4:27–41. doi:  10.1007/s12652-011-0065-z CrossRefGoogle Scholar
  31. Varkey JP, Pompili D, Walls T (2012) Human motion recognition using a wireless sensor-based wearable system. Pers Ubiquitous Comput 16:897–910. doi:  10.1007/s00779-011-0455-4 CrossRefGoogle Scholar
  32. Yang A, Jafari R, Sastry S, Bajcsy R (2009) Distributed recognition of human actions using wearable motion sensor networks. J Ambient Intell Smart Environ 1:103–115. doi:  10.3233/AIS-2009-0016 Google Scholar
  33. Zhu C, Sheng W (2011) Motion- and location-based online human daily activity recognition. Pervasive Mob Comput 7:256–269. doi:  10.1016/j.pmcj.2010.11.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Technical Department, Faculty of EngineeringUniversity of SzegedSzegedHungary
  2. 2.Department of Technical Informatics, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations