Advertisement

Fall detection monitoring systems: a comprehensive review

  • Pranesh Vallabh
  • Reza Malekian
Original Research
  • 302 Downloads

Abstract

The increase in elderly population especially in the developed countries and the number of elderly people living alone can result in increased healthcare costs which can cause a huge burden on the society. With fall being one of the biggest risk among the elderly population resulting in serious injuries, if not treated quickly. The advancements in technology, over the years, resulted in an increase in the research of different fall detection systems. Fall detection systems can be grouped into the following categories: camera-based, ambient sensors, and wearable sensors. The detection algorithm and the sensors used can affect the accuracy of the system. The detection algorithm used can either be a decision tree or machine learning algorithms. In this paper, we study the different fall detection systems and the problems associated with these systems. The fall detection model which most recent studies implements will be analysed. From the study, it is found that personalized models are the key, for creating an accurate model and not limiting users to specific activities to perform.

Keywords

Fall detection Machine learning Elderly care Healthcare 

References

  1. Alwan M, Rajendran PJ, Kell S, Mack D, Dalal S, Wolfe M, Felder R (2006) A smart and passive floor-vibration based fall detector for elderly. In: Information and communication technologies, 2006. ICTTA’06. 2nd, IEEE, vol 1, pp 1003–1007Google Scholar
  2. Anania G, Tognetti A, Carbonaro N, Tesconi M, Cutolo F, Zupone G, De Rossi D (2008) Development of a novel algorithm for human fall detection using wearable sensors. In: Sensors, 2008 IEEE, IEEE, pp 1336–1339Google Scholar
  3. Andò B, Baglio S, Lombardo CO, Marletta V (2015) An event polarized paradigm for adl detection in aal context. IEEE Trans Instrum Meas 64(7):1814–1825CrossRefGoogle Scholar
  4. Andò B, Baglio S, Lombardo CO, Marletta V (2016) A multisensor data-fusion approach for adl and fall classification. IEEE Trans Instrum Meas 65(9):1960–1967CrossRefGoogle Scholar
  5. Aslan M, Sengur A, Xiao Y, Wang H, Ince MC, Ma X (2015) Shape feature encoding via fisher vector for efficient fall detection in depth-videos. Appl Soft Comput 37:1023–1028CrossRefGoogle Scholar
  6. Auvinet E, Multon F, Saint-Arnaud A, Rousseau J, Meunier J (2011) Fall detection with multiple cameras: an occlusion-resistant method based on 3-d silhouette vertical distribution. IEEE Trans Inf Technol Biomed 15(2):290–300CrossRefGoogle Scholar
  7. Bagalà F, Becker C, Cappello A, Chiari L, Aminian K, Hausdorff JM, Zijlstra W, Klenk J (2012) Evaluation of accelerometer-based fall detection algorithms on real-world falls. PloS One 7(5):e37062CrossRefGoogle Scholar
  8. Bianchi F, Redmond SJ, Narayanan MR, Cerutti S, Lovell NH (2010) Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans Neural Syst Rehab Eng 18(6):619–627CrossRefGoogle Scholar
  9. Bosch-Jorge M, Sánchez-Salmerón AJ, Valera Á, Ricolfe-Viala C (2014) Fall detection based on the gravity vector using a wide-angle camera. Expert Syst Appl 41(17):7980–7986CrossRefGoogle Scholar
  10. Bourke AK, Lyons GM (2008) A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med Eng Phys 30(1):84–90CrossRefGoogle Scholar
  11. Cao Y, Yang Y, Liu W (2012) E-falld: A fall detection system using android-based smartphone. In: Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on, IEEE, pp 1509–1513Google Scholar
  12. Chaccour K, Darazi R, el Hassans AH, Andres E (2015) Smart carpet using differential piezoresistive pressure sensors for elderly fall detection. In: Wireless and mobile computing, networking and communications (WiMob), 2015 IEEE 11th International Conference on, IEEE, pp 225–229Google Scholar
  13. Chen OTC, Kuo CJ (2014) Self-adaptive fall-detection apparatus embedded in glasses. In: Engineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE, IEEE, pp 4623–4626Google Scholar
  14. Colon LNV, DeLaHoz Y, Labrador M (2014) Human fall detection with smartphones. In: Communications (LATINCOM), 2014 IEEE Latin-America conference on, IEEE, pp 1–7Google Scholar
  15. de la Concepción MÁÁ, Morillo LMS, García JAÁ, González-Abril L (2017) Mobile activity recognition and fall detection system for elderly people using ameva algorithm. Pervasive Mob Comput 34:3–13CrossRefGoogle Scholar
  16. Daher M, Diab A, El Najjar MEB, Khalil M, Charpillet F (2016) Elder tracking and fall detection system using smart tiles. Sensors 15800:1Google Scholar
  17. De Backere F, Ongenae F, Van den Abeele F, Nelis J, Bonte P, Clement E, Philpott M, Hoebeke J, Verstichel S, Ackaert A et al (2015) Towards a social and context-aware multi-sensor fall detection and risk assessment platform. Comput Biol Med 64:307–320CrossRefGoogle Scholar
  18. De Maio C, Fenza G, Loia V, Orciuoli F (2017) Making sense of cloud-sensor data streams via fuzzy cognitive maps and temporal fuzzy concept analysis. Neurocomputing 256:35–48CrossRefGoogle Scholar
  19. Debard G, Karsmakers P, Deschodt M, Vlaeyen E, Dejaeger E, Milisen K, Goedemé T, Vanrumste B, Tuytelaars T (2012) Camera-based fall detection on real world data. In: Outdoor and large-scale real-world scene analysis, pp 356–375Google Scholar
  20. Delahoz YS, Labrador MA (2014) Survey on fall detection and fall prevention using wearable and external sensors. Sensors 14(10):19806–19842CrossRefGoogle Scholar
  21. Doukas C, Maglogiannis I (2008) Advanced patient or elder fall detection based on movement and sound data. In: Pervasive computing technologies for healthcare, 2008. PervasiveHealth 2008. Second International Conference on, IEEE, pp 103–107Google Scholar
  22. Foroughi H, Rezvanian A, Paziraee A (2008) Robust fall detection using human shape and multi-class support vector machine. In: Computer vision, graphics & image processing, 2008. ICVGIP’08. Sixth Indian conference on, IEEE, pp 413–420Google Scholar
  23. Garripoli C, Mercuri M, Karsmakers P, Soh PJ, Crupi G, Vandenbosch GA, Pace C, Leroux P, Schreurs D (2015) Embedded dsp-based telehealth radar system for remote in-door fall detection. IEEE J Biomed Health Inf 19(1):92–101CrossRefGoogle Scholar
  24. Ghasemzadeh H, Jafari R, Prabhakaran B (2010) A body sensor network with electromyogram and inertial sensors: multimodal interpretation of muscular activities. IEEE Trans Inf Technol Biomed 14(2):198–206CrossRefGoogle Scholar
  25. Gibson RM, Amira A, Ramzan N, Casaseca-de-la Higuera P, Pervez Z (2016) Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic. Appl Soft Comput 39:94–103CrossRefGoogle Scholar
  26. Gupta PK, Maharaj B, Malekian R (2016) A novel and secure IOT based cloud centric architecture to perform predictive analysis of users activities in sustainable health centres. Multimed Tools Appl 76:18489–18512CrossRefGoogle Scholar
  27. Hakim A, Huq MS, Shanta S, Ibrahim B (2017) Smartphone based data mining for fall detection: analysis and design. Procedia Comput Sci 105:46–51CrossRefGoogle Scholar
  28. Hazelhoff L, Han J, et al (2008) Video-based fall detection in the home using principal component analysis. In: International conference on advanced concepts for intelligent vision systems, Springer, pp 298–309Google Scholar
  29. Hsu Yt, Hsieh Jw, Kao HF, Liao HyM (2005) Human behavior analysis using deformable triangulations. In: Multimedia signal processing, 2005 IEEE 7th Workshop on, IEEE, pp 1–4Google Scholar
  30. Hu X, Qu X (2014) An individual-specific fall detection model based on the statistical process control chart. Saf Sci 64:13–21CrossRefGoogle Scholar
  31. Hu X, Qu X (2015) Detecting falls using a fall indicator defined by a linear combination of kinematic measures. Saf Sci 72:315–318CrossRefGoogle Scholar
  32. Huang H, Gong T, Chen P, Malekian R, Chen T (2016) Secure two-party distance computation protocol based on privacy homomorphism and scalar product in wireless sensor networks. Tsinghua Sci Technol 21(4):385–396CrossRefGoogle Scholar
  33. Huang S, Yang Y, Liu W (2011) An enhanced fall detection approach based on cost sensitivity analysis. In: Software and network engineering (SSNE), 2011 First ACIS international symposium on, IEEE, pp 81–85Google Scholar
  34. Igual R, Medrano C, Plaza I (2013) Challenges, issues and trends in fall detection systems. Biomed Eng Online 12(1):66CrossRefGoogle Scholar
  35. Igual R, Medrano C, Plaza I (2015) A comparison of public datasets for acceleration-based fall detection. Med Eng Phys 37(9):870–878CrossRefGoogle Scholar
  36. Jian H, Chen H (2015) A portable fall detection and alerting system based on k-nn algorithm and remote medicine. China Commun 12(4):23–31MathSciNetCrossRefGoogle Scholar
  37. Jin X, Shao J, Zhang X, An W, Malekian R (2016) Modeling of nonlinear system based on deep learning framework. Nonlinear Dyn 84(3):1327–1340MathSciNetCrossRefGoogle Scholar
  38. Kangas M, Konttila A, Lindgren P, Winblad I, Jämsä T (2008) Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2):285–291CrossRefGoogle Scholar
  39. Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG (2006) Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed 10(1):156–167CrossRefGoogle Scholar
  40. Kau LJ, Chen CS (2015) A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J Biomed Health Inf 19(1):44–56CrossRefGoogle Scholar
  41. Khan MS, Yu M, Feng P, Wang L, Chambers J (2015) An unsupervised acoustic fall detection system using source separation for sound interference suppression. Signal Process 110:199–210CrossRefGoogle Scholar
  42. Khan SS, Hoey J (2017) Review of fall detection techniques: a data availability perspective. Med Eng Phys 39:12–22CrossRefGoogle Scholar
  43. Kreković M, Čerić P, Dominko T, Ilijaš M, Ivančić K, Skolan V, Šarlija J (2012) A method for real-time detection of human fall from video. In: MIPRO, 2012 Proceedings of the 35th International Convention, IEEE, pp 1709–1712Google Scholar
  44. Kwolek B, Kepski M (2014) Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput Methods Progr Biomed 117(3):489–501CrossRefGoogle Scholar
  45. Kwolek B, Kepski M (2015) Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168:637–645CrossRefGoogle Scholar
  46. Kwolek B, Kepski M (2016) Fuzzy inference-based fall detection using kinect and body-worn accelerometer. App Soft Comput 40:305–318CrossRefGoogle Scholar
  47. Lai CF, Chang SY, Chao HC, Huang YM (2011) Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling. IEEE Sens J 11(3):763–770CrossRefGoogle Scholar
  48. Leone A, Rescio G, Caroppo A, Siciliano P (2015) A wearable emg-based system pre-fall detector. Procedia Eng 120:455–458CrossRefGoogle Scholar
  49. Li Y, Ho K, Popescu M (2012) A microphone array system for automatic fall detection. IEEE Trans Biomed Eng 59(5):1291–1301CrossRefGoogle Scholar
  50. Litvak D, Zigel Y, Gannot I (2008) Fall detection of elderly through floor vibrations and sound. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th annual international conference of the IEEE, IEEE, pp 4632–4635Google Scholar
  51. Liu L, Popescu M, Skubic M, Rantz M (2014) An automatic fall detection framework using data fusion of doppler radar and motion sensor network. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, IEEE, pp 5940–5943Google Scholar
  52. Luque R, Casilari E, Morón MJ, Redondo G (2014) Comparison and characterization of android-based fall detection systems. Sensors 14(10):18543–18574CrossRefGoogle Scholar
  53. Ma X, Wang H, Xue B, Zhou M, Ji B, Li Y (2014) Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J Biomed Health Inf 18(6):1915–1922CrossRefGoogle Scholar
  54. Medrano C, Igual R, Plaza I, Castro M, Fardoun HM (2014) Personalizable smartphone application for detecting falls. In: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference on, IEEE, pp 169–172Google Scholar
  55. Medrano C, Plaza I, Igual R, Sánchez Á, Castro M (2016) The effect of personalization on smartphone-based fall detectors. Sensors 16(1):117CrossRefGoogle Scholar
  56. Miaou SG, Sung PH, Huang CY (2006) A customized human fall detection system using omni-camera images and personal information. In: Distributed diagnosis and home healthcare, 2006. D2H2. 1st Transdisciplinary Conference on, IEEE, pp 39–42Google Scholar
  57. Naranjo-Hernandez D, Roa LM, Reina-Tosina J, Estudillo-Valderrama MA (2012) Personalization and adaptation to the medium and context in a fall detection system. IEEE Trans Inf Technol Biomed 16(2):264–271CrossRefGoogle Scholar
  58. Nguyen TT, Cho MC, Lee TS (2009) Automatic fall detection using wearable biomedical signal measurement terminal. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, pp 5203–5206Google Scholar
  59. Nizam Y, Mohd MNH, Jamil MMA (2017) Human fall detection from depth images using position and velocity of subject. Procedia Comput Sci 105:131–137CrossRefGoogle Scholar
  60. Ozcan K, Velipasalar S (2016) Wearable camera-and accelerometer-based fall detection on portable devices. IEEE Embedded Syst Lett 8(1):6–9CrossRefGoogle Scholar
  61. Ozcan K, Velipasalar S, Varshney PK (2017) Autonomous fall detection with wearable cameras by using relative entropy distance measure. IEEE Trans Hum Mach Syst 47(1):31–39Google Scholar
  62. Özdemir AT, Barshan B (2014) Detecting falls with wearable sensors using machine learning techniques. Sensors 14(6):10691–10708CrossRefGoogle Scholar
  63. Pannurat N, Thiemjarus S, Nantajeewarawat E (2017) A hybrid temporal reasoning framework for fall monitoring. IEEE Sens 17:1749–1759CrossRefGoogle Scholar
  64. Perry JT, Kellog S, Vaidya SM, Youn JH, Ali H, Sharif H (2009) Survey and evaluation of real-time fall detection approaches. In: High-capacity optical networks and enabling technologies (HONET), 2009 6th international symposium on, IEEE, pp 158–164Google Scholar
  65. Popescu M, Mahnot A (2009) Acoustic fall detection using one-class classifiers. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, pp 3505–3508Google Scholar
  66. Popescu M, Hotrabhavananda B, Moore M, Skubic M (2012) Vampir-an automatic fall detection system using a vertical pir sensor array. In: Pervasive computing technologies for healthcare (PervasiveHealth), 2012 6th International Conference on, IEEE, pp 163–166Google Scholar
  67. Principi E, Droghini D, Squartini S, Olivetti P, Piazza F (2016) Acoustic cues from the floor: a new approach for fall classification. Expert Syst Appl 60:51–61CrossRefGoogle Scholar
  68. Rimminen H, Lindström J, Linnavuo M, Sepponen R (2010) Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Trans Inf Technol Biomed 14(6):1475–1476CrossRefGoogle Scholar
  69. Rougier C, Meunier J, St-Arnaud A, Rousseau J (2006) Monocular 3d head tracking to detect falls of elderly people. In: Engineering in medicine and biology society, 2006. EMBS’06. 28th annual international conference of the IEEE, IEEE, pp 6384–6387Google Scholar
  70. Rougier C, Meunier J, St-Arnaud A, Rousseau J (2007) Fall detection from human shape and motion history using video surveillance. In: Advanced information networking and applications workshops, 2007, AINAW’07. 21st international conference on, IEEE, vol 2, pp 875–880Google Scholar
  71. Rougier C, Auvinet E, Rousseau J, Mignotte M, Meunier J (2011) Fall detection from depth map video sequences. In: International conference on smart homes and health telematics, Springer, pp 121–128Google Scholar
  72. Sabatini AM, Ligorio G, Mannini A, Genovese V, Pinna L (2016) Prior-to-and post-impact fall detection using inertial and barometric altimeter measurements. IEEE Trans Neural Syst Rehab Eng 24(7):774–783CrossRefGoogle Scholar
  73. Schwickert L, Becker C, Lindemann U, Maréchal C, Bourke A, Chiari L, Helbostad J, Zijlstra W, Aminian K, Todd C et al (2013) Fall detection with body-worn sensors. Zeitschrift für Gerontologie und Geriatrie 46(8):706–719CrossRefGoogle Scholar
  74. Shen VR, Lai HY, Lai AF (2015) The implementation of a smartphone-based fall detection system using a high-level fuzzy petri net. Appl Soft Comput 26:390–400CrossRefGoogle Scholar
  75. Sposaro F, Tyson G (2009) ifall: an android application for fall monitoring and response. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE, IEEE, pp 6119–6122Google Scholar
  76. Steidl S, Schneider C, Hufnagl M (2012) Fall detection by recognizing patterns in direction changes of constraining forces. In: Proceedings of the eHealth 2012, Vienna, Austria, 10–11 May 2012Google Scholar
  77. Stone EE, Skubic M (2015) Fall detection in homes of older adults using the microsoft kinect. IEEE J Biomed Health Inf 19(1):290–301CrossRefGoogle Scholar
  78. Thome N, Miguet S (2006) A hhmm-based approach for robust fall detection. In: Control, automation, robotics and vision, 2006. ICARCV’06. 9th international conference on, IEEE, pp 1–8Google Scholar
  79. Tomii S, Ohtsuki T (2012) Falling detection using multiple doppler sensors. In: e-Health networking, applications and services (Healthcom), 2012 IEEE 14th international conference on, IEEE, pp 196–201Google Scholar
  80. van de Ven P, O’Brien H, Nelson J, Clifford A (2015) Unobtrusive monitoring and identification of fall accidents. Med Eng Phys 37(5):499–504CrossRefGoogle Scholar
  81. Wang J, Zhang Z, Li B, Lee S, Sherratt R (2014) An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Trans Consum Electron 60(1):23–29CrossRefGoogle Scholar
  82. Wannenburg J, Malekian R (2015) Body sensor network for mobile health monitoring, a diagnosis and anticipating system. IEEE Sens J 15(12):6839–6852CrossRefGoogle Scholar
  83. Wannenburg J, Malekian R (2016) Physical activity recognition from smartphone accelerometer data for user context awareness sensing. IEEE Trans Syst Man Cybern SystGoogle Scholar
  84. Werner F, Diermaier J, Schmid S, Panek P (2011) Fall detection with distributed floor-mounted accelerometers: An overview of the development and evaluation of a fall detection system within the project ehome. In: Pervasive computing technologies for healthcare (PervasiveHealth), 2011 5th international conference on, IEEE, pp 354–361Google Scholar
  85. Wu W, Dasgupta S, Ramirez EE, Peterson C, Norman GJ (2012) Classification accuracies of physical activities using smartphone motion sensors. J Med Internet Res 14(5):e130CrossRefGoogle Scholar
  86. Yang K, Ahn CR, Vuran MC, Aria SS (2016a) Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit. Autom Const 68:194–202CrossRefGoogle Scholar
  87. Yang L, Ren Y, Hu H, Tian B (2015) New fast fall detection method based on spatio-temporal context tracking of head by using depth images. Sensors 15(9):23004–23019CrossRefGoogle Scholar
  88. Yang L, Ren Y, Zhang W (2016b) 3d depth image analysis for indoor fall detection of elderly people. Digit Commun Netw 2(1):24–34CrossRefGoogle Scholar
  89. Yang SW, Lin SK (2014) Fall detection for multiple pedestrians using depth image processing technique. Comput Methods Progr Biomed 114(2):172–182CrossRefGoogle Scholar
  90. Yazar A, Keskin F, Töreyin BU, Çetin AE (2013) Fall detection using single-tree complex wavelet transform. Pattern Recogn Lett 34(15):1945–1952CrossRefGoogle Scholar
  91. Yu M, Yu Y, Rhuma A, Naqvi SMR, Wang L, Chambers JA (2013) An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment. IEEE J Biomed Health Inf 17(6):1002–1014CrossRefGoogle Scholar
  92. Yun Y, Gu IYH (2016) Human fall detection in videos by fusing statistical features of shape and motion dynamics on riemannian manifolds. Neurocomputing 207:726–734CrossRefGoogle Scholar
  93. Zhang C, Lai CF, Lai YH, Wu ZW, Chao HC (2017) An inferential real-time falling posture reconstruction for internet of healthcare things. J Netw Comput Appl 89:86–95CrossRefGoogle Scholar
  94. Zhang T, Wang J, Xu L, Liu P (2006) Fall detection by wearable sensor and one-class svm algorithm. In: Intelligent computing in signal processing and pattern recognition, pp 858–863Google Scholar
  95. Zhuang X, Huang J, Potamianos G, Hasegawa-Johnson M (2009) Acoustic fall detection using gaussian mixture models and gmm supervectors. In: Acoustics, speech and signal processing, 2009. ICASSP 2009. IEEE International Conference on, IEEE, pp 69–72Google Scholar
  96. Zigel Y, Litvak D, Gannot I (2009) A method for automatic fall detection of elderly people using floor vibrations and soundproof of concept on human mimicking doll falls. IEEE Trans Biomed Eng 56(12):2858–2867CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations