Internet of Things based activity surveillance of defence personnel

  • Munish BhatiaEmail author
  • Sandeep K. Sood
Original Research


Developments in Internet of Things (IoT) Technology have been effectively utilized in different industrial sectors for monitoring, surveillance, and remote decision-making. The ability to acquire in-depth information about ubiquitous events has proliferated numerous opportunities for using this technology in sensitive domains like national defence security. In this paper, a comprehensive IoT-based framework is presented for analyzing national integrity of defence personnel with consideration to his/her daily activities. As reported by investigating agencies of many countries, routinely engagements of defence personnel are one of the premier reasons for vulnerability to national defence through intentional and unintentional information outflow of defence secrets. The work presented in this research is focused on monitoring various activities of defence personnel to determine his/her integral behavior in daily life. Specifically, Integrity Index Value is defined for every defence personnel based on different social engagements, and activities for detecting the vulnerability to national security. In addition to this, a probabilistic decision tree based automated decision making is presented to aid defence officials in analyzing various activities of a defence personnel for his/her integrity assessment. In order to validate the proposed framework, three challenging data sets have been considered for experimental evaluation. The computed results are compared with the state-of-the-art techniques for overall assessment. Results show that the proposed model achieves better performance in monitoring and analyzing activities of defence personnel for effective decision making.


Internet of Things (IoT) Degree of Integrity (DoI) Decision tree Integrity index value\(_{\text {on duty}}\) Integrity index value\(_{\text {off duty}}\) 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aggarwal CC, Zhai C (2012) Mining text data. SpringerGoogle Scholar
  2. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of Things: a survey on enabling technologies, protocols and applications. IEEE Commun Surveys Tutor 17:2347–2376. doi: 10.1109/COMST.2015.2444095 CrossRefGoogle Scholar
  3. Antoni A, Marjanovi M, Pripui K, Arko IP (2016) A mobile crowd sensing ecosystem enabled by CUPUS: cloud-based publish/subscribe middleware for the Internet of Things. Futur Gener Comput Syst 56:607–622. doi: 10.1016/j.future.2015.08.005 CrossRefGoogle Scholar
  4. Baba AI, Lu H, Pedersen TB, Xie X (2013) A graph model for false negative handling in indoor RFID tracking data. In: 21st ACM International Conference on Advances in Geographic Information Systems. ACM. doi: 10.1145/2525314.2525461
  5. Bjelopera JP, Randol MA (2011) The federal bureau of investigation and terrorism investigations. Congressional Research Service, Library of Congress. Accessed 10 Jan 2016
  6. Bosch X (2012) Beyond 9/11: health consequences of the terror attacks outside the USA. Intern Emerg Med 7:159–161. doi: 10.1007/s11739-011-0748-7 CrossRefGoogle Scholar
  7. Chen T, Lehr J, Lavrova O, Martinez-Ramonz M (2016) Distribution-level peak load prediction based on Bayesian additive regression trees. In Power and Energy Society General Meeting (PESGM), IEEE. doi: 10.1109/PESGM.2016.7741565 CrossRefGoogle Scholar
  8. Chen Z, Xia F, Huang T, Bu F, Wang H (2013) A localization method for the Internet of Things. J Supercomput 63:657–674. doi: 10.1007/s11227-011-0693-2 CrossRefGoogle Scholar
  9. Chiremsel Z, Said RN, Chiremsel R (2016) Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network. J Fail Anal Prevent 16:747–760. doi: 10.1007/s11668-016-0140-z CrossRefGoogle Scholar
  10. Darwish M, Almouahed S, de Lamotte F (2017) The integration of expert-defined importance factors to enrich Bayesian fault tree analysis. Reliab Eng Syst Saf 162:81–90. doi: 10.1016/j.ress.2017.01.007 CrossRefGoogle Scholar
  11. De Martino B, Kumaran D, Seymour B, Dolan RJ (2006) Frames, biases, and rational decision-making in the human brain. Science 313:684–687. doi: 10.1126/science.1128356 CrossRefGoogle Scholar
  12. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51:107–113. doi: 10.1145/1327452.1327492 CrossRefGoogle Scholar
  13. Ding G, Guo Y, Zhou J, Gao Y (2016) Large-scale cross-modality search via collective matrix factorization hashing. IEEE Trans Image Process 25:5427–5440. doi: 10.1109/TIP.2016.2607421 MathSciNetCrossRefGoogle Scholar
  14. Fang S, Xu L, Pei H, Liu Y, Liu Z, Zhu Y, Zhang H (2014) An integrated approach to snowmelt flood forecasting in water resource management. IEEE Trans Ind Inf 10:548–558. doi: 10.1109/TII.2013.2257807
  15. Feng DG, Zhang M, Zhang Y, Xu Z (2011) Study on cloud computing security. J Softw 22:71–83CrossRefGoogle Scholar
  16. Flouvat F, Nguyen Van Soc JF, Desmier E, Selmaoui-Folcher N (2015) Domain-driven co-location mining. Geoinformatica 19:147–183. doi: 10.1007/s10707-014-0209-3 CrossRefGoogle Scholar
  17. Ganz F, Barnaghi P, Carrez F (2013) Information abstraction for heterogeneous real world internet data. IEEE Sens J 13:3793–3805. doi: 10.1109/JSEN.2013.2271562 CrossRefGoogle Scholar
  18. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29:1645–1660. doi: 10.1016/j.future.2013.01.010 CrossRefGoogle Scholar
  19. Harte N, Gillen E (2015) TCD-TIMIT: an audio-visual corpus of continuous speech. IEEE Trans Multimed 17:603–615. doi: 10.1109/TMM.2015.2407694 CrossRefGoogle Scholar
  20. Harwood B, Drummond T (2016) FANNG: fast approximate nearest neighbour graphs. IEEE Conf Comput Vis Patt Recognit (CVPR). doi: 10.1109/CVPR.2016.616
  21. Hirsch M, Carli P, Nizard R, Riou B, Baroudjian B, Baubet T, Fontaine JP (2015) The medical response to multisite terrorist attacks in Paris. Lancet 386:2535–2538. doi: 10.1016/S0140-6736(15)01063-6 CrossRefGoogle Scholar
  22. Holmes G, Donkin A, Witten IH (1994) Weka: a machine learning workbench. IEEE, In Intelligent Information Systems. doi: 10.1109/ANZIIS.1994.396988
  23. Hsieh CK, Tangmunarunkit H, Alquaddoomi F, Jenkins J, Kang J, Ketcham C, Estrin D (2013) Lifestreams: a modular sense-making toolset for identifying important patterns from everyday life. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems. ACM. doi: 10.1145/2517351.2517368
  24. Keller JM, Gray MR, Givens JA (1985) A fuzzy k-nearest neighbor algorithm. IEEE Trans Syst Man Cybern 4:580–585CrossRefGoogle Scholar
  25. Kelly SDT, Suryadevara NK, Mukhopadhyay SC (2013) Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sens J 13:3846–3853. doi: 10.1109/JSEN.2013.2263379 CrossRefGoogle Scholar
  26. Kontschieder P, Fiterau M, Criminisi A, Rota Bulo S (2015) Deep neural decision forests. IEEE Int Conf Comput Vis (ICVR). doi: 10.1109/ICCV.2015.172
  27. Kronstadt KA (2008) Terrorist attacks in Mumbai, India, and implications for US interests. Library of Congress Washington DC Congressional Research Service. Accessed 2 Jan 2016
  28. Kumar S, Udupa R (2011) Learning hash functions for cross-view similarity search. Int Joint Conf Artif Intel. doi: 10.5591/978-1-57735-516-8/IJCAI11-230
  29. Le Bas C, Sahuguede S, Julien-Vergonjanne A (2017) Theoretical and experimental approach for the design of an optical wireless physical activity monitoring system. Int J Wirel Inf Netw. doi: 10.1007/s10776-017-0337-4 CrossRefGoogle Scholar
  30. Lee J, Fan Y, Sisson SA (2015) Bayesian threshold selection for extremal models using measures of surprise. Comput Stat Data Anal 85:84–99. doi: 10.1016/j.csda.2014.12.004 MathSciNetCrossRefGoogle Scholar
  31. Lee L, Romano R, Stein G (2000) Monitoring activities from multiple video streams: establishing a common coordinate frame. IEEE Trans Patt Anal Mach Intell 22:758–767. doi: 10.1109/34.868678 CrossRefGoogle Scholar
  32. Li J, Stones RJ, Wang G, Liu X, Li Z, Xu M (2017) Hard drive failure prediction using Decision Trees. Reliab Eng Syst Saf 164:55–65. doi: 10.1016/j.ress.2017.03.004 CrossRefGoogle Scholar
  33. Li S, Da Xu L, Wang X (2013) Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans Ind Inf 9:2177–2186. doi: 10.1109/TII.2012.2189222 CrossRefGoogle Scholar
  34. Liang M, Hu X (2015) Recurrent convolutional neural network for object recognition. IEEE Conf Comput Vis Patt Recognit (CVPR). doi: 10.1109/CVPR.2015.7298958
  35. Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing sax: a novel symbolic representation of time series. Data Min Knowl Disc 15:107–144. doi: 10.1007/s10618-007-0064-z MathSciNetCrossRefGoogle Scholar
  36. Lin Z, Ding G, Han J, Wang J (2016) Cross-view retrieval via probability-based semantics-preserving hashing. IEEE Trans Cybern. doi: 10.1109/TCYB.2016.2608906 CrossRefGoogle Scholar
  37. Liu Y, Xu L, Li M (2016) The parallelization of back propagation neural network in MapReduce and spark. Int J Parallel Program. doi: 10.1007/s10766-016-0401-1 CrossRefGoogle Scholar
  38. Lu G, Yan Y, Sebe N, Kambhamettu C (2014) Knowing where i am: exploiting multi-task learning for multi-view indoor image-based localization. BMVC. doi: 10.5244/C.28.125
  39. Manikonda L, Mangalampalli A, Pudi V (2010) UACI: Uncertain associative classifier for object class identification in images. Image Vis Comput N Z (IVCNZ). doi: 10.1109/IVCNZ.2010.6148859
  40. Maurer U, Smailagic A, Siewiorek DP, Deisher M (2006) International Workshop on Wearable and Implantable Body Sensor Networks. In: IEEE, Activity recognition and monitoring using multiple sensors on different body positions. doi: 10.1109/BSN.2006.6
  41. Mavroforakis ME, Theodoridis S (2005) IEEE, Support Vector Machine (SVM) classification through geometryGoogle Scholar
  42. Meucci F, Pierucci L, Prasad N (2011) Identity theft detection based on neural network non-linearity identification in OFDM system. In: 2011 IEEE International Conference on Communications (ICC). IEEEGoogle Scholar
  43. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P (2003) Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng 50:711–723. doi: 10.1109/TBME.2003.812189 CrossRefGoogle Scholar
  44. Narula S, Jain A (2015) Cloud computing security: Amazon web service. Adv Comput Commun Technol (ACCT) IEEE. doi: 10.1109/ACCT.2015.20
  45. ONS Database. Accessed 17 March 2017
  46. Panahi N, Shayesteh MG, Mihandoost S, Varghahan BZ (2011) Recognition of different datasets using PCA, LDA, and various classifiers. In: Application of Information and Communication Technologies (AICT). IEEE. doi: 10.1109/ICAICT.2011.6110912
  47. Payal A, Rai CS, Reddy BVR (2014) Artificial neural networks for developing localization framework in wireless sensor networks. In: Data Mining and Intelligent Computing (ICDMIC),IEEE. doi: 10.1109/ICDMIC.2014.6954228
  48. Qian F, Yin L, He Q, He J (2009) Mining spatio-temporal co-location patterns with weighted sliding window. IEEE Int Conf Intell Comput Intell Syst 3:181–185. doi: 10.1109/ICICISYS.2009.5358192 CrossRefGoogle Scholar
  49. Rokach L, Maimon O (2014) Data mining with decision trees: theory and applications. World scientificGoogle Scholar
  50. Schmid H (2013) Probabilistic part-ospeech tagging using decision trees. In: New methods in language processing. RoutledgeGoogle Scholar
  51. Song J, Yang Y, Yang Y, Huang Z, Shen HT (2013) Inter-media hashing for large-scale retrieval from heterogeneous data sources. Int Conf Manag Data. doi: 10.1145/2463676.2465274
  52. Sparapani RA, Logan BR, McCulloch RE, Laud PW (2016) Nonparametric survival analysis using bayesian additive regression trees (bart). Stat Med. doi: 10.1002/sim.6893 MathSciNetCrossRefGoogle Scholar
  53. St J, Oniga S, Buchman A (2015) Real time human activity monitoring. Ann Math Inf 44:187–196. from187to196.pdf. Accessed 10 Jan 2016
  54. Sundaram VM, Paneer P (2012) Discovering co-location patterns from spatial domain using a delaunay approach. Proc Eng 38:2832–2845. doi: 10.1016/j.proeng.2012.06.332 CrossRefGoogle Scholar
  55. Tong S, Chang E (2001) Support vector machine active learning for image retrieval. Ninth ACM Int Conf Multimed. doi: 10.1145/500141.500159
  56. Vale L, Brito M, Henriques J, Carvalho P, Pena A, Santiago F (2010) LifeStream: real-time bio-signal remote monitoring system. In: 4th International Conference In Bioinformatics and Biomedical Engineering (ICBBE). IEEE. doi: 10.1109/ICBBE.2010.5514665
  57. Wang L, Tao J, Ranjan R, Marten H, Streit A, Chen J, Chen D (2013) G-Hadoop: MapReduce across distributed data centers for data-intensive computing. Futur Gener Compu Syst 29:739–750. doi: 10.1016/j.future.2012.09.001 CrossRefGoogle Scholar
  58. Xia Y, Liu C, Li Y, Liu N (2017) A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst Appl 78:225–241. doi: 10.1016/j.eswa.2017.02.017 CrossRefGoogle Scholar
  59. Xu L, He W, Li S (2014) Internet of Things in industries: a survey. IEEE Trans Ind Inf 10:2233–2243. doi: 10.1109/TII.2014.2300753 CrossRefGoogle Scholar
  60. Xu Y, Agyemang B, Wu S, Liu M (2017) Procedure graph model for automatic RFID data processing service management. IEEE Internet Things J. doi: 10.1109/JIOT.2017.2661326 CrossRefGoogle Scholar
  61. Yang CC, Hsu YL (2010) A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10:7772–7788. doi: 10.3390/s100807772 CrossRefGoogle Scholar
  62. Zhang GA, Gu JY, Bao ZH, Xu C, Zhang SB (2014) Joint routing and channel assignment algorithms in cognitive wireless mesh networks. Trans Emerg Telecommun Technol 25:294–307. doi: 10.1002/ett.2560 CrossRefGoogle Scholar
  63. Zhao S, Yao H, Sun X (2013) Video classification and recommendation based on affective analysis of viewers. Neurocomputing 119:101–110. doi: 10.1016/j.neucom.2012.04.042 CrossRefGoogle Scholar
  64. Zhao S, Yao H, Gao Y, Ji R, Ding G (2016) Continuous probability distribution prediction of image emotions via multi-task shared sparse regression. IEEE Trans Multimed. doi: 10.1109/TMM.2016.2617741 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Guru Nanak Dev UniversityGurdaspurIndia

Personalised recommendations