Advertisement

Flow visualization and analysis of thermal distribution for the nanofluid by the integration of fuzzy c-means clustering ANFIS structure and CFD methods

  • Panpan Xu
  • Meisam Babanezhad
  • Hooman Yarmand
  • Azam MarjaniEmail author
Regular Paper
  • 11 Downloads

Abstract

A nanofluid containing copper (Cu) nanoparticles was simulated in a rectangular cavity using computational fluid dynamic (CFD). The upper and lower walls of the cavity were adiabatic, while the right and left walls had warm and cold temperatures, respectively. This temperature difference causes a thermal flow from the right wall to the left wall. The elements of the coordination system in different directions, including velocity in the Y direction (V) and fluid temperature, were obtained using CFD. Adaptive network-based fuzzy inference system (ANFIS) was used to train the CFD outputs and provided artificial flow field and temperature distribution along the cavity domain. The CFD outputs were used as input and output data for the ANFIS method. The position of the fluid layer in X and Y computing directions and fluid velocity (Y axis) were used as three inputs, and the fluid temperature was taken as the output in the ANFIS method training process. The data were categorized using fuzzy c-means clustering, and different numbers of clusters were taken as a key parameter in this method. Using the fuzzy inference system, it is possible to predict the nodes in the cavity not generated through CFD simulation so that different coordination of the fluid at these points can be computed. Using ANFIS method, it is possible to reduce the computation time of CFD method so that more nodes are predicted in a shorter period of time, while clustering method can enhance the computing time for each neural cell. The ANFIS method can also visualize the flow in the cavity and display the thermal distribution along with the heat source.

Graphic abstract

Keywords

ANFIS Machine learning FCM clustering CFD Standard deviation (StD) errors Artificial intelligence Flow visualization 

Notes

References

  1. Abonyi J et al (1999) Inverse fuzzy-process-model based direct adaptive control. Math Comput Simul 51(1–2):119–132MathSciNetCrossRefGoogle Scholar
  2. Abu-Nada E (2008) Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow 29(1):242–249CrossRefGoogle Scholar
  3. Abu-Nada E (2009) Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection. Int J Heat Fluid Flow 30(4):679–690CrossRefGoogle Scholar
  4. Aminossadati S, Kargar A, Ghasemi B (2012) Adaptive network-based fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid. Int J Therm Sci 52:102–111CrossRefGoogle Scholar
  5. Asgarpour Khansary M et al (2017a) Correlation of sorption-induced swelling in polymeric films with reference to attenuated total reflectance Fourier-transform infrared spectroscopy data. Eur Polym J 91:429–435CrossRefGoogle Scholar
  6. Asgarpour Khansary M, Marjani A, Shirazian S (2017b) Prediction of carbon dioxide sorption in polymers for capture and storage feasibility analysis. Chem Eng Res Des 120:254–258CrossRefGoogle Scholar
  7. Asgarpour Khansary M et al (2018) A priority supposition for estimation of time-dependent changes in thickness and weight of polymeric flat sheet membranes fabricated by the nonsolvent induced phase separation (NIPS) technique. Adv Polym Technol 37(6):1963–1969CrossRefGoogle Scholar
  8. Avila G, Pacheco-Vega A (2009) Fuzzy-C-means-based classification of thermodynamic-property data: a critical assessment. Numer Heat Transf Part A Appl 56(11):880–896CrossRefGoogle Scholar
  9. Azwadi CSN et al (2013) Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity. Numer Heat Transf Part A Appl 63(12):906–920CrossRefGoogle Scholar
  10. Babanezhad M et al (2019) Liquid‐phase chemical reactors: development of 3D hybrid model based on CFD‐adaptive network‐based fuzzy inference system. Can J Chem Eng 97(S1):1676–1684CrossRefGoogle Scholar
  11. Bararnia H, Soleimani S, Ganji DD (2011) Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure. Int Commun Heat Mass Transf 38(10):1436–1442CrossRefGoogle Scholar
  12. Bataineh K, Naji M, Saqer M (2011) A comparison study between various fuzzy clustering algorithms. Jordan J Mech Ind Eng 5(4):335–343Google Scholar
  13. Ben-Nakhi A, Mahmoud MA, Mahmoud AM (2008) Inter-model comparison of CFD and neural network analysis of natural convection heat transfer in a partitioned enclosure. Appl Math Model 32(9):1834–1847zbMATHCrossRefGoogle Scholar
  14. Boyacioglu MA, Avci D (2010) An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Syst Appl 37(12):7908–7912CrossRefGoogle Scholar
  15. Brinkmann HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571CrossRefGoogle Scholar
  16. Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, LemontGoogle Scholar
  17. Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRefGoogle Scholar
  18. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11(5):797–817CrossRefGoogle Scholar
  19. Delavar MA, Farhadi M, Sedighi K (2010) Numerical simulation of direct methanol fuel cells using lattice Boltzmann method. Int J Hydrogen Energy 35(17):9306–9317CrossRefGoogle Scholar
  20. Ding Y et al (2018) Lattice Boltzmann method for rain-induced overland flow. J Hydrol 562:789–795CrossRefGoogle Scholar
  21. Fasihi M et al (2012) Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation. Math Comput Model 56(11):278–286CrossRefGoogle Scholar
  22. Fattahi E et al (2012) Lattice Boltzmann simulation of natural convection heat transfer in nanofluids. Int J Therm Sci 52:137–144CrossRefGoogle Scholar
  23. Ghadiri M, Shirazian S, Ashrafizadeh SN (2012) Mass transfer simulation of gold extraction in membrane extractors. Chem Eng Technol 35(12):2177–2182CrossRefGoogle Scholar
  24. Ghadiri M, Marjani A, Shirazian S (2013) Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors. Int J Greenh Gas Control 13:1–8CrossRefGoogle Scholar
  25. Ghasemi A et al (2017) Using quantum chemical modeling and calculations for evaluation of cellulose potential for estrogen micropollutants removal from water effluents. Chemosphere 178:411–423CrossRefGoogle Scholar
  26. Haghshenas Fard M, Esfahany MN, Talaie MR (2010) Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int Commun Heat Mass Transf 37(1):91–97CrossRefGoogle Scholar
  27. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRefGoogle Scholar
  28. Jang J-S (1996) Input selection for ANFIS learning. In: Proceedings of the 5th IEEE international conference on fuzzy systems. IEEEGoogle Scholar
  29. Jang J (2017) Frequently asked questions–ANFIS in the fuzzy logic toolbox. http://www.cs.nthu.edu.tw/~jang/anfisfaq.htm
  30. Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. IEEE Trans Autom Control 42(10):1482–1484CrossRefGoogle Scholar
  31. Jooshani S et al (2018) Contaminant uptake by polymeric passive samplers: a modeling study with experimental validation. Chem Eng Res Des 129:231–236CrossRefGoogle Scholar
  32. Kaehler S (2006) Fuzzy logic tutorial, the newsletter of the Seattle Robotic Society (encoder). http://www.seattlerobotics.org/encoder/199803/fuz/flindex.html
  33. Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44CrossRefGoogle Scholar
  34. Kefayati GR et al (2011) Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int Commun Heat Mass Transfer 38(6):798–805CrossRefGoogle Scholar
  35. Kefayati GHR et al (2012) Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid. Int J Therm Sci 52:91–101CrossRefGoogle Scholar
  36. Kennedy E, Condon M, Dowling J (2003) Torque-ripple minimisation in switched reluctance motors using a neuro-fuzzy control strategy. In: Proceedings of the IASTED international conference on modelling and simulation (MS 2003), February 24–26, 2003, Palm Springs, California, USAGoogle Scholar
  37. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46(19):3639–3653zbMATHCrossRefGoogle Scholar
  38. Khansary MA, Marjani A, Shirazian S (2017) On the search of rigorous thermo-kinetic model for wet phase inversion technique. J Membr Sci 538:18–33CrossRefGoogle Scholar
  39. Khodadadi JM, Hosseinizadeh SF (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf 34(5):534–543CrossRefGoogle Scholar
  40. Lai F-H, Yang Y-T (2011) Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int J Therm Sci 50(10):1930–1941CrossRefGoogle Scholar
  41. Lei Y et al (2007) Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mech Syst Signal Process 21(5):2280–2294CrossRefGoogle Scholar
  42. Mahmoodi M (2011) Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int J Therm Sci 50(9):1731–1740CrossRefGoogle Scholar
  43. Marjani A, Shirazian S (2011) Simulation of heavy metal extraction in membrane contactors using computational fluid dynamics. Desalination 281:422–428CrossRefGoogle Scholar
  44. Mohammed HA et al (2011) Convective heat transfer and fluid flow study over a step using nanofluids: a review. Renew Sustain Energy Rev 15(6):2921–2939CrossRefGoogle Scholar
  45. Nabavitabatabayi M, Shirani E, Rahimian MH (2011) Investigation of heat transfer enhancement in an enclosure filled with nanofluids using multiple relaxation time lattice Boltzmann modeling. Int Commun Heat Mass Transf 38(1):128–138CrossRefGoogle Scholar
  46. Nemati H et al (2010) Lattice Boltzmann simulation of nanofluid in lid-driven cavity. Int Commun Heat Mass Transf 37(10):1528–1534CrossRefGoogle Scholar
  47. Oztop HF, Abu-Nada E (2008) Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow 29(5):1326–1336CrossRefGoogle Scholar
  48. Panella M, Gallo AS (2005) An input–output clustering approach to the synthesis of ANFIS networks. IEEE Trans Fuzzy Syst 13(1):69–81CrossRefGoogle Scholar
  49. Pashaie P et al (2012) Nusselt number estimation along a wavy wall in an inclined lid-driven cavity using adaptive neuro-fuzzy inference system (anfis). Int J Eng Trans A Basics 26(4):383Google Scholar
  50. Pourtousi M (2012) Simulation of particle motion in incompressible fluid by lattice Boltzmann MRT Model. Universiti Teknologi MalaysiaGoogle Scholar
  51. Pourtousi M et al (2012) Simulation of fluid flow inside a back-ward-facing step by MRT-LBM. Int Proc Comput Sci Inf Technol 33:130–135Google Scholar
  52. Pourtousi M et al (2015a) Prediction of multiphase flow pattern inside a 3D bubble column reactor using a combination of CFD and ANFIS. RSC Adv 5(104):85652–85672CrossRefGoogle Scholar
  53. Pourtousi M et al (2015b) A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics. Powder Technol 274:466–481CrossRefGoogle Scholar
  54. Rezakazemi M, Shirazian S (2019) Multiscale computational modeling of organic compounds separation using microporous membranes. Desalin Water Treat 142:136–139CrossRefGoogle Scholar
  55. Safdari A, Dabir H, Kim KC (2018) Cubic-Interpolated Pseudo-particle model to predict thermal behavior of a nanofluid. Comput Fluids 164:102–113MathSciNetzbMATHCrossRefGoogle Scholar
  56. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47(3):1815CrossRefGoogle Scholar
  57. Shan X, Doolen G (1996) Diffusion in a multicomponent lattice Boltzmann equation model. Phys Rev E 54(4):3614CrossRefGoogle Scholar
  58. Sheldareh A et al (2012) Prediction of particle dynamics in lid-driven cavity flow. Int Rev Model Simul 5(3):1344–1347Google Scholar
  59. Shirazian S, Ashrafizadeh SN (2015) LTA and ion-exchanged LTA zeolite membranes for dehydration of natural gas. J Ind Eng Chem 22:132–137CrossRefGoogle Scholar
  60. Shirazian S, Marjani A, Fadaei F (2011) Supercritical extraction of organic solutes from aqueous solutions by means of membrane contactors: CFD simulation. Desalination 277(1):135–140CrossRefGoogle Scholar
  61. Shirazian S et al (2012) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295CrossRefGoogle Scholar
  62. Sohrabi MR et al (2011) Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes. Appl Math Model 35(1):174–188zbMATHCrossRefGoogle Scholar
  63. Soltani R et al (2020) Synthesis and characterization of novel N-methylimidazolium-functionalized KCC-1: a highly efficient anion exchanger of hexavalent chromium. Chemosphere 239:124735CrossRefGoogle Scholar
  64. Soltani R et al (2019a) Novel diamino-functionalized fibrous silica submicro-spheres with a bimodal-micro-mesoporous network: ultrasonic-assisted fabrication, characterization, and their application for superior uptake of Congo red. J Mol Liq 294:111617CrossRefGoogle Scholar
  65. Soltani R, Marjani A, Shirazian S (2019b) Shell-in-shell monodispersed triamine-functionalized SiO2 hollow microspheres with micro-mesostructured shells for highly efficient removal of heavy metals from aqueous solutions. J Environ Chem Eng 7(1):102832CrossRefGoogle Scholar
  66. Soltani R, Marjani A, Shirazian S (2019c) Facile one-pot synthesis of thiol-functionalized mesoporous silica submicrospheres for Tl(I) adsorption: isotherm, kinetic and thermodynamic studies. J Hazard Mater 371:146–155CrossRefGoogle Scholar
  67. Vahala L et al (2000) Thermal lattice Boltzmann simulation for multispecies fluid equilibration. Phys Rev E 62(1):507CrossRefGoogle Scholar
  68. Varol Y et al (2008) Analysis of adaptive-network-based fuzzy inference system (ANFIS) to estimate buoyancy-induced flow field in partially heated triangular enclosures. Expert Syst Appl 35(4):1989–1997CrossRefGoogle Scholar
  69. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13(4):474–480CrossRefGoogle Scholar
  70. Wasp FJ (1977) Solid–liquid slurry pipeline transportation. Trans. Tech, BerlinGoogle Scholar
  71. Wolf-Gladrow DA (2000) 5. Lattice Boltzmann models. In: Lattice gas cellular automata and lattice Boltzmann models. Springer, Berlin, pp 159–246zbMATHCrossRefGoogle Scholar
  72. Xuan Y, Yao Z (2004) Lattice Boltzmann model for nanofluids. Heat Mass Transf 41(3):199–205Google Scholar
  73. Yang Z et al (2000) Evaluation of the Darcy’s law performance for two-fluid flow hydrodynamics in a particle debris bed using a lattice-Boltzmann model. Heat Mass Transf 36(4):295–304CrossRefGoogle Scholar
  74. Yilmaz I, Kaynar O (2011) Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl 38(5):5958–5966CrossRefGoogle Scholar
  75. Zabihi S et al (2019) Development of hybrid ANFIS–CFD model for design and optimization of membrane separation of benzoic acid. J Non-Equilib Thermodyn 44(3):285–293MathSciNetCrossRefGoogle Scholar
  76. Zarei F, Marjani A, Hassani Joshaghani A (2019a) Triamino-anchored KCC-1: a novel and promising adsorbent for fast and highly effective aqueous CrVI removal. J Environ Chem Eng 7(5):103309CrossRefGoogle Scholar
  77. Zarei F, Marjani A, Soltani R (2019b) Novel and green nanocomposite-based adsorbents from functionalised mesoporous KCC-1 and chitosan-oleic acid for adsorption of Pb(II). Eur Polym J 119:400–409CrossRefGoogle Scholar
  78. Zeinali M et al (2016) Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper. Smart Mater Struct 25(5):055010CrossRefGoogle Scholar
  79. Zhou L, Xuan Y, Li Q (2010) Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method. Int J Multiph Flow 36(5):364–374CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2019

Authors and Affiliations

  1. 1.School of Management EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Department of Energy, Faculty of Mechanical Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations