Advertisement

Journal of Visualization

, Volume 23, Issue 1, pp 111–123 | Cite as

Event-based exploration and comparison on time-varying ensembles

  • Can Liu
  • Yanda Li
  • Changhe Yang
  • Xiaoru YuanEmail author
Regular Paper
  • 35 Downloads

Abstract

We propose an event-based analysis system for comparison of several ensemble time-varying simulations. In this pipeline, users can customize the selection of events (i.e., the keyframes of the simulations) for each simulation on the timeline view. The associated rendered thumbnails are tiled in the rendered thumbnail view. The ticks on the timeline and the rendered thumbnails are connected by a link. Users are allowed to do 3D exploration on the render thumbnails and the high-resolution view on which the details can be displayed. Switching between different variables is supported to assist users in exploring the rendering of different ensemble variables or even combinations of variables. We apply our system into the deep water impact ensemble dataset. The system is proved to have the ability to help users better explore the simulations.

Graphic abstract

Keywords

Science visualization Ensemble data Asteroid impacting 

Notes

Funding

This work is supported by National Numerical Windtunnel Project NNW2018-ZT6B12 and the National Program on Key Basic Research Project (973 Program) No. 2015CB352503.

References

  1. Abd-Almageed W (2008) Online, simultaneous shot boundary detection and key frame extraction for sports videos using rank tracing. In: 2008 15th IEEE international conference on image processing, pp 3200–3203Google Scholar
  2. Athawale T, Entezari A (2013) Uncertainty quantification in linear interpolation for isosurface extraction. IEEE Trans Vis Comput Graph 19(12):2723–2732CrossRefGoogle Scholar
  3. Athawale T, Sakhaee E, Entezari A (2016) Isosurface visualization of data with nonparametric models for uncertainty. IEEE Trans Vis Comput Graph 22(1):777–786CrossRefGoogle Scholar
  4. Bordoloi U, Kao DL, Shen H (2004) Visualization techniques for spatial probability density function data. Data Sci J 3:153–162CrossRefGoogle Scholar
  5. Chen Y, Du X, Yuan X (2017) Ordered small multiple treemaps for visualizing time-varying hierarchical pesticide residue data. Vis Comput 33(6–8):1073–1084CrossRefGoogle Scholar
  6. Demir I, Dick C, Westermann R (2014) Multi-charts for comparative 3d ensemble visualization. IEEE Trans Vis Comput Graph 20(12):2694–2703CrossRefGoogle Scholar
  7. Inamura T, Tanie H, Nakamura Y (2003) Keyframe compression and decompression for time series data based on the continuous hidden Markov model. In: Proceedings of the of 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Cat. No.03CH37453), vol 2, pp 1487–1492Google Scholar
  8. Kehrer J, Hauser H (2013) Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans Vis Comput Graph 19(3):495–513CrossRefGoogle Scholar
  9. Kumar G, Garland M (2006) Visual exploration of complex time-varying graphs. IEEE Trans Vis Comput Graph 12(5):805–812CrossRefGoogle Scholar
  10. Li Y, Lu A, Ribarsky W, Wei C (2010) Automatic animation for time-varying data visualization. Comput Graph Forum 29(7):2271–2280CrossRefGoogle Scholar
  11. Liu R, Guo H, Yuan X (2017) User-defined feature comparison for vector field ensembles. J Vis 20(2):217–229CrossRefGoogle Scholar
  12. Lu A, Shen H (2008) Interactive storyboard for overall time-varying data visualization. In: Proceedings of 2008 IEEE Pacific visualization symposium, pp 143–150Google Scholar
  13. Luo A, Kao DT, Dungan JL, Pang A (2003) Visualizing spatial distribution data sets. In: Proceedings of symposium on visualization, pp 29–38Google Scholar
  14. Ma B, Entezari A (2019) An interactive framework for visualization of weather forecast ensembles. IEEE Trans Vis Comput Graph 25(1):1091–1101CrossRefGoogle Scholar
  15. Obermaier H, Joy KI (2014) Future challenges for ensemble visualization. IEEE Comput Graph Appl 34(3):8–11CrossRefGoogle Scholar
  16. Pfaffelmoser T, Westermann R (2013) Correlation visualization for structural uncertainty analysis. Int J Uncertain Quantif 3(2):171–186MathSciNetCrossRefGoogle Scholar
  17. Pfaffelmoser T, Reitinger M, Westermann R (2011) Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Comput Graph Forum 30(3):951–960CrossRefGoogle Scholar
  18. Pöthkow K, Hege H (2011) Positional uncertainty of isocontours: condition analysis and probabilistic measures. IEEE Trans Vis Comput Graph 17(10):1393–1406CrossRefGoogle Scholar
  19. Pöthkow K, Weber B, Hege H (2011) Probabilistic marching cubes. Comput Graph Forum 30(3):931–940CrossRefGoogle Scholar
  20. Potter K, Wilson AT, Bremer P, Williams DN, Doutriaux CM, Pascucci V, Johnson CR (2009) Ensemble-vis: a framework for the statistical visualization of ensemble data. In: Proceedings of IEEE data mining workshops, pp 233–240Google Scholar
  21. Potter K, Kniss J, Riesenfeld RF, Johnson CR (2010) Visualizing summary statistics and uncertainty. Comput Graph Forum 29(3):823–832CrossRefGoogle Scholar
  22. Potter K, Kirby M, Xiu D, Johnson CR (2012) Interactive visualization of probability and cumulative density functions. Int J Uncertain Quantif 2(4):397–412MathSciNetCrossRefGoogle Scholar
  23. Rufiange S, McGuffin MJ (2013) Diffani: visualizing dynamic graphs with a hybrid of difference maps and animation. IEEE Trans Vis Comput Graph 19(12):2556–2565CrossRefGoogle Scholar
  24. Sanyal J, Zhang S, Dyer J, Mercer A, Amburn P, Moorhead RJ (2010) Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans Vis Comput Graph 16(6):1421–1430CrossRefGoogle Scholar
  25. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE symposium on visual languages. IEEE, pp 336–343Google Scholar
  26. Shu Q, Guo H, Liang J, Che L, Liu J, Yuan X (2016) Ensemblegraph: interactive visual analysis of spatiotemporal behaviors in ensemble simulation data. In: Proceedings of IEEE Pacific visualization symposium, pp 56–63Google Scholar
  27. Shu Q, Liu R, Hong F, Zhang J, Yuan X (2018) State-of-the-art of ensemble visualization. J Softw 29(2):506–523 (in Chinese) Google Scholar
  28. Süßmuth J, Winter M, Greiner G (2008) Reconstructing animated meshes from time-varying point clouds. Comput Graph Forum 27(5):1469–1476CrossRefGoogle Scholar
  29. Tao J, Imre M, Wang C, Chawla NV, Guo H, Sever G, Kim SH (2019) Exploring time-varying multivariate volume data using matrix of isosurface similarity maps. IEEE Trans Vis Comput Graph 25(1):1236–1245CrossRefGoogle Scholar
  30. Thompson DC, Levine JA, Bennett J, Bremer P, Gyulassy A, Pascucci V, Pébay PP (2011) Analysis of large-scale scalar data using hixels. In: Proceedings of IEEE LDAV symposium, pp 23–30Google Scholar
  31. Wang J, Hazarika S, Li C, Shen H (2019) Visualization and visual analysis of ensemble data: a survey. IEEE Trans Vis Comput Graph 25(9):2853–2872.  https://doi.org/10.1109/TVCG.2018.2853721 CrossRefGoogle Scholar
  32. Whitaker RT, Mirzargar M, Kirby RM (2013) Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Trans Vis Comput Graph 19(12):2713–2722CrossRefGoogle Scholar
  33. Zhou B, Chiang Y-J (2018) Key time steps selection for large-scale time-varying volume datasets using an information-theoretic storyboard. Comput Graph Forum 37(3):37–49CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2019

Authors and Affiliations

  1. 1.Key Laboratory of Machine Perception (Ministry of Education), and School of EECSPeking UniversityBeijingChina
  2. 2.National Engineering Laboratory for Big Data Analysis and ApplicationPeking UniversityBeijingChina

Personalised recommendations