# Moving with the flow: an automatic tour of unsteady flow fields

- 33 Downloads

### Abstract

We present a novel framework that creates an automatic tour of unsteady flow fields for exploring internal flow features. Our solution first identifies critical flow regions for time steps and computes their temporal correspondence. We then extract skeletons from critical regions for feature orientation and pathline placement. The key part of our algorithm determines which critical region to focus on at each time step and derives the region traversal order over time using a combination of energy minimization and dynamic programming strategies. After that, we create candidate viewpoints based on the construction of a simplified mesh enclosing each focal region and select the best viewpoints using a viewpoint quality measure. Finally, we design a spatiotemporal tour that efficiently traverses focal regions over time. We demonstrate our algorithm with several unsteady flow data sets and perform a user study and an expert evaluation to confirm the benefits of including internal viewpoints in the design.

### Graphic abstract

## Keywords

Unsteady flow Critical regions Feature correspondence Seed placement Internal viewpoints Automatic tour## Notes

### Acknowledgements

This research was supported in part by the U.S. National Science Foundation through Grants IIS-1456763, IIS-1455886, and DUE-1833129.

## Supplementary material

## References

- Bai Z, Yang R, Zhou Z, Tao Y, Lin H (2016) Topology aware view path design for time-varying volume data. J Vis 19(4):797–809CrossRefGoogle Scholar
- Bordoloi UD, Shen HW (2005) View selection for volume rendering. In: Proceedings of IEEE visualization conference, pp 487–494Google Scholar
- Buatois L, Caumon G, Lévy B (2009) Concurrent number cruncher—a GPU implementation of a general sparse linear solver. Int J Parallel Emergent Distrib Syst 24(3):205–223MathSciNetCrossRefGoogle Scholar
- Campbell MJ, Julious SA, Altman DG (1995) Estimating sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. Br Med J 311(7031):1145–1148CrossRefGoogle Scholar
- Chandler J, Obermaier H, Joy KI (2015) Interpolation-based pathline tracing in particle-based flow visualization. IEEE Trans Vis Comput Graph 21(1):68–80CrossRefGoogle Scholar
- Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen 141(1):2–18CrossRefGoogle Scholar
- Gagvani N, Silver D (1999) Parameter-controlled volume thinning. Graph Models Image Process 61(3):149–164CrossRefGoogle Scholar
- Hsu WH, Zhang Y, Ma KL (2013) A multi-criteria approach to camera motion design for volume data animation. IEEE Trans Vis Comput Graph 19(12):2792–2801CrossRefGoogle Scholar
- Janusonis S (2009) Comparing two small samples with an unstable, treatment-independent baseline. J Neurosci Methods 179(2):173–178CrossRefGoogle Scholar
- Ji G, Shen HW (2006) Dynamic view selection for time-varying volumes. IEEE Trans Vis Comput Graph 12(5):1109–1116MathSciNetCrossRefGoogle Scholar
- Lane DA (1993) Visualization of time-dependent flow fields. In: Proceedings of IEEE conference on visualization, pp 32–38Google Scholar
- Lee TY, Mishchenko O, Shen HW, Crawfis R (2011) View point evaluation and streamline filtering for flow visualization. In: Proceedings of IEEE pacific visualization symposium, pp 83–90Google Scholar
- Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of ACM SIGGRAPH conference, pp 163–169CrossRefGoogle Scholar
- Ma J, Wang C, Shene CK (2013) Coherent view-dependent streamline selection for importance-driven flow visualization. In: Proceedings of IS&T/SPIE conference on visualization and data analysis, pp 865407:1–865407:15Google Scholar
- Ma J, Walker J, Wang C, Kuhl SA, Shene CK (2014) FlowTour: an automatic guide for exploring internal flow features. In: Proceedings of IEEE pacific visualization symposium, pp 25–32Google Scholar
- Marchesin S, Chen CK, Ho C, Ma KL (2010) View-dependent streamlines for 3D vector fields. IEEE Trans Vis Comput Graph 16(6):1578–1586CrossRefGoogle Scholar
- McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Comput Graph Forum 29(6):1807–1829CrossRefGoogle Scholar
- McLoughlin T, Jones MW, Laramee RS, Malki R, Masters I, Hansen CD (2013) Similarity measures for enhancing interactive streamline seeding. IEEE Trans Vis Comput Graph 19(8):1342–1353CrossRefGoogle Scholar
- Meuschke M, Engelke W, Beuing O, Preim B, Lawonn K (2017) Automatic viewpoint selection for exploration of time-dependent cerebral aneurysm data. In: Bildverarbeitung für die Medizin. Springer, Berlin, Heidelberg, pp 352–357Google Scholar
- Moberts B, Vilanova A, van Wijk JJ (2005) Evaluation of fiber clustering methods for diffusion tensor imaging. In: Proceedings of IEEE visualization conference, pp 65–72Google Scholar
- Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2003) The state of the art in flow visualisation: feature extraction and tracking. Comput Graph Forum 22(4):775–792CrossRefGoogle Scholar
- Sadlo F, Rigazzi A, Peikert R (2011) Time-dependent visualization of Lagrangian coherent structures by grid advection. In: Topological methods in data analysis and visualization. Springer, Berlin, Heidelberg, pp 151–165Google Scholar
- Silver D, Wang X (1997) Tracking and visualizing turbulent 3D features. IEEE Trans Vis Comput Graph 3(2):129–141CrossRefGoogle Scholar
- Silver D, Wang X (1998) Tracking scalar features in unstructured data sets. In: Proceedings of IEEE visualization conference, pp 79–86Google Scholar
- Spencer B, Laramee RS, Chen G, Zhang E (2009) Evenly spaced streamlines for surfaces. Comput Graph Forum 28(6):1618–1631CrossRefGoogle Scholar
- Steinman DA (2000) Simulated pathline visualization of computed periodic blood flow patterns. J Biomech 33(5):623–628CrossRefGoogle Scholar
- Takahashi S, Fujishiro I, Takeshima Y, Nishita T (2005) A feature-driven approach to locating optimal viewpoints for volume visualization. In: Proceedings of IEEE visualization conference, pp 495–502Google Scholar
- Tao J, Ma J, Wang C, Shene CK (2013) A unified approach to streamline selection and viewpoint selection for 3D flow visualization. IEEE Trans Vis Comput Graph 19(3):393–406CrossRefGoogle Scholar
- Viola I, Feixas M, Sbert M, Gröller ME (2006) Importance-driven focus of attention. IEEE Trans Vis Comput Graph 12(5):933–940CrossRefGoogle Scholar
- Xu L, Lee TY, Shen HW (2010) An information-theoretic framework for flow visualization. IEEE Trans Vis Comput Graph 16(6):1216–1224CrossRefGoogle Scholar
- Yu H, Wang C, Shene CK, Chen JH (2012) Hierarchical streamline bundles. IEEE Trans Vis Comput Graph 18(8):1353–1367CrossRefGoogle Scholar