Advertisement

Journal of Visualization

, Volume 22, Issue 5, pp 913–926 | Cite as

FuzzyRadar: visualization for understanding fuzzy clusters

  • Fangfang Zhou
  • Bing Bai
  • Yitao Wu
  • Minghui Chen
  • Zengsheng Zhong
  • Rongchen Zhu
  • Yi Chen
  • Ying ZhaoEmail author
Regular Paper
  • 63 Downloads

Abstract

Fuzzy clustering assigns a membership degree (MD) on a datum to a cluster, which reflects real-world clustering scenarios but increases the complexity of understanding fuzzy clusters. Many studies have demonstrated that multidimensional visualization techniques are beneficial to fuzzy clusters analysis. However, empirically, no single existing visualization technique can support most analytical tasks featured by fuzzy clustering. This work proposes a new visualization called FuzzyRadar for understanding fuzzy clusters. Its basic idea is to combine the advantages of radial coordinate visualization (Radviz), which specializes in data-oriented analytical tasks, and parallel coordinate plot (PCP), which performs well in cluster-oriented analytical tasks. First, we adopt a compact and compounded layout to integrate Radviz and PCP into one visualization view. Then, we introduce a strip-edge-bundling method to reduce the visual cluster caused by PCP polylines and a histogram embedding method to facilitate the recognition of MD distribution. We also provide a group of additional visual encodings and a set of lightweight interactions. Finally, we use a case study to demonstrate the usability of FuzzyRadar and conduct a controlled quantitative evaluation to compare the performance of FuzzyRadar, Radviz, PCP, and scatterplot matrix. Result shows that FuzzyRadar supports all the seven examined analytical tasks well and presents a significant capability improvement compared with Radviz and PCP.

Graphic abstract

Keywords

Visualization Visual analysis Fuzzy clustering Radviz Parallel coordinate plot 

Notes

Acknowledgements

This work is supported by the National Key Research and Development Program of China No. 2018YFB0904503, the National Science and Technology Fundamental Resources Investigation Program of China No. 2018FY10090002, the National Natural Science Foundation of China Nos. 61672538 and 61872388, and the Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety (Beijing Technology and Business University) No. BKBD-2018KF08.

Supplementary material

12650_2019_577_MOESM1_ESM.mp4 (7.3 mb)
Supplementary material 1 (MP4 7523 kb)

References

  1. Abonyi J, Babuska R (2004) Fuzzsam-visualization of fuzzy clustering results by modified Sammon mapping. In: Proceedings of the IEEE international conference on fuzzy systems. IEEE, pp 365–370Google Scholar
  2. Albuquerque G, Eisemann M, Lehmann DJ, Theisel H, Magnor M (2010) Improving the visual analysis of high-dimensional datasets using quality measures. In: Proceedings of the IEEE symposium on visual analytics science and technology, pp 19–26Google Scholar
  3. Artero AO, de Oliveira MCF (2014) Viz3D: effective exploratory visualization of large multidimensional data sets. In: Proceedings of the 17th Brazilian symposium on computer graphics and image processing, pp 340–347Google Scholar
  4. Asuncion A, Newman D (2007) UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets.html. Accessed 15 Apr 2019
  5. Berthold MR, Hall LO (2003) Visualizing fuzzy points in parallel coordinates. IEEE Trans Fuzzy Syst 11(3):369–374CrossRefGoogle Scholar
  6. Bi C, Fu B, Chen J, Zhao Y, Yang L, Duan Y, Shi Y (2019) Machine learning based fast multi-layer liquefaction disaster assessment. In: World Wide Web: internet and web information systems, pp 1–16.  https://doi.org/10.1007/s11280-018-0632-8 CrossRefGoogle Scholar
  7. Cao N, Lin YR, Gotz D (2015) UnTangle map: visual analysis of probabilistic multi-label data. IEEE Trans Vis Comput Graph 22(2):1149–1163CrossRefGoogle Scholar
  8. Chen H, Zhang S, Chen W et al (2015) uncertainty-aware multidimensional ensemble data visualization and exploration. IEEE Trans Vis Comput Graph 21(9):1072–1086CrossRefGoogle Scholar
  9. Chen W, Xia J, Wang X, Chen J, Wang Y, Chang L (2018a) RelationLines: visual reasoning of egocentric relations from heterogeneous urban data. ACM Trans Intell Syst Technol 10(1):1–22Google Scholar
  10. Chen W, Huang Z, Wu F, Zhu M, Guan H, Maciejewski R (2018b) VAUD: a visual analysis approach for exploring spatio-temporal urban data. IEEE Trans Vis Comput Graph 24(9):2636–2648CrossRefGoogle Scholar
  11. De Oliveira JV, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley, LondonCrossRefGoogle Scholar
  12. Dimara E, Bezerianos A, Dragicevic P (2018) Conceptual and methodological issues in evaluating multidimensional visualizations for decision support. IEEE Trans Vis Comput Graph 24(1):749–759CrossRefGoogle Scholar
  13. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster. J Cybern 3(3):32–57MathSciNetCrossRefzbMATHGoogle Scholar
  14. Epp CD, Bull S (2015) Uncertainty representation in visualizations of learning analytics for learners: current approaches and opportunities. IEEE Trans Learn Technol 8(3):242–260CrossRefGoogle Scholar
  15. Etemadpour R, Motta R, Jg DSP (2015) Perception-based evaluation of projection methods for multidimensional data visualization. IEEE Trans Vis Comput Graph 21(1):81–94CrossRefGoogle Scholar
  16. Feil B, Balasko B, Abonyi J (2007) Visualization of fuzzy clusters by fuzzy sammon mapping projection: application to the analysis of phase space trajectories. Soft Comput 11(5):479–488CrossRefGoogle Scholar
  17. Ferreira N, Fisher D, Konig AC (2014) Sample-oriented task-driven visualizations: allowing users to make better, more confident decisions. In: Proceedings of the Sigchi conference. ACM, pp 571–580Google Scholar
  18. Holten D, Van Wijk JJ (2010) Evaluation of cluster identification performance for different PCP variants. Comput Graph Forum 29(3):793–802CrossRefGoogle Scholar
  19. Hoppner F, Klawonn F (2006) Visualising clusters in high-dimensional data sets by intersecting spheres. In: Proceedings of the international symposium on evolving fuzzy systems. IEEE, pp 106–111Google Scholar
  20. Inselberg A, Dimsdale B (1987) Parallel coordinates for visualizing multi-dimensional geometry. In: Proceedings of the international conference on computer graphics, pp 25–44Google Scholar
  21. Klawonn F, Chekhtman V, Janz E (2003) Visual inspection of fuzzy clustering results. In: Proceedings of advances in soft computing. CRC, pp 65–76Google Scholar
  22. Kuntal BK, Ghosh TS, Mande SS (2014) Igloo-Plot: a tool for visualization of multidimensional datasets. Genomics 103(1):11–20CrossRefGoogle Scholar
  23. Leban G, Zupan B, Vidmar G, Bratko I (2006) Vizrank: data visualization guided by machine learning. Data Min Knowl Discov 13(2):119–136MathSciNetCrossRefGoogle Scholar
  24. Lin YR, Cao N, Gotz D, Lu L (2015) Untangle: visual mining for data with uncertain multi-labels via triangle map. In: Proceedings of the IEEE international conference on data mining. IEEE, pp 340–349Google Scholar
  25. Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2017) Towards better analysis of deep convolutional neural networks. IEEE Trans Visual Comput Graph 23(1):91–100CrossRefGoogle Scholar
  26. Long TV (2014) iSPLOM: interactive with scatterplot matrix for exploring multidimensional data. In: Proceedings of the international conference on knowledge and systems engineering, pp 175–186Google Scholar
  27. Ma Y, Tung AKH, Wang W, Gao X, Pan Z, Chen W (2019) ScatterNet: a deep subjective similarity model for visual analysis of scatterplots. IEEE Trans Vis Comput Graph.  https://doi.org/10.1109/tvcg.2018.2875702 CrossRefGoogle Scholar
  28. Manuel R, Laura R, Francisco D, Alberto S (2016) A comparative study between Radviz and star coordinates. IEEE Trans Vis Comput Graph 22(1):619–628CrossRefGoogle Scholar
  29. Marghescu D (2007) User evaluation of multidimensional data visualization techniques for financial benchmarking. In: Proceedings of the European conference on information management and evaluation. AMCIS, p 509Google Scholar
  30. Novakova L, Stepankova O (2009) Radviz and identification of clusters in multidimensional data. In: Proceeding of the 17th international conference on information visualization, pp 104–109Google Scholar
  31. Palmas G, Bachynskyi M, Oulasvirta A (2014) An edge-bundling layout for interactive parallel coordinates. In: Proceedings of IEEE Pacific visualization symposium. IEEE, pp 57–64Google Scholar
  32. Peng W, Ward MO, Rundensteiner EA (2004) Clutter reduction in multidimensional data visualization using dimension reordering. In: Proceedings of the IEEE symposium on information visualization. IEEE, pp 89–96Google Scholar
  33. Rueda L, Zhang Y (2006) Geometric visualization of clusters obtained from fuzzy clustering algorithms. Pattern Recogn 39(8):1415–1429CrossRefzbMATHGoogle Scholar
  34. Ruspini EH (1969) A new approach to clustering. Inf Control 15(15):22–32CrossRefzbMATHGoogle Scholar
  35. Rzeźniczak T (2013) Evaluation of multidimensional visualization techniques for medical patterns representation. J Theor Appl Comput Sci 7(4):75–85Google Scholar
  36. Sanyal J, Zhang S, Bhattacharya G (2009) A user study to compare four uncertainty visualization methods for 1D and 2D datasets. IEEE Trans Vis Comput Graph 15(6):1209–1218CrossRefGoogle Scholar
  37. Sedlmair M, Munzner T, Tory M (2013) Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans Vis Comput Graph 19(12):2634–2643CrossRefGoogle Scholar
  38. Sharko J, Grinstein G (2009) Visualizing fuzzy clusters using RadViz. In: Proceedings of the 13th international conference on information visualisation. IEEE, pp 307–316Google Scholar
  39. Shi R, Yang M, Zhao Y, Zhou F, Huang W, Zhang S (2016) A matrix-based visualization system for network traffic forensics. IEEE Syst J 10(4):1350–1360CrossRefGoogle Scholar
  40. Shi Y, Bryan C, Bhamidipati S, Zhao Y, Zhang Y, Ma K-L (2018) MeetingVis: visual narratives to assist in recalling meeting context and content. IEEE Trans Vis Comput Graph 24(6):1918–1929CrossRefGoogle Scholar
  41. Wu Y, Yuan G-X, Ma K-L (2012) Visualizing flow of uncertainty through analytical processes. IEEE Trans Vis Comput Graph 18(12):2526–2535CrossRefGoogle Scholar
  42. Wu Y, Cao N, Gotz D, Tan Y-P, Keim DA (2016) A survey on visual analytics of social media data. IEEE Trans Multimed 18(11):2135–2148CrossRefGoogle Scholar
  43. Xia J, Ye F, Chen W, Wang Y, Chen W, Ma Y, Tung AKH (2018a) LDSScanner: exploratory analysis of low-dimensional structures in high-dimensional datasets. IEEE Trans Vis Comput Graph 24(1):236–245CrossRefGoogle Scholar
  44. Xia J, Gao L, Kong K, Zhao Y, Chen Y, Kui X, Liang Y (2018b) Exploring linear projections for revealing clusters, outliers, and trends in subsets of multi-dimensional datasets. J Vis Lang Comput 48:52–60CrossRefGoogle Scholar
  45. Xie C, Chen W, Huang X, Hu Y, Barlowe S, Yang J (2014) VAET: a visual analytics approach for E-Transactions time-series. IEEE Trans Vis Comput Graph 20(12):1743–1752CrossRefGoogle Scholar
  46. Yang J, Peng W, Ward M, Rundensteiner E (2003) Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In: Proceedings of IEEE symposium on information visualization. IEEE, pp 105–112Google Scholar
  47. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefzbMATHGoogle Scholar
  48. Zhao Y, She Y, Chen W, Lu Y, Xia J, Chen W, Liu J, Zhou F (2018) EOD edge sampling for visualizing dynamic network via massive sequence view. IEEE Access 6(1):53006–53018CrossRefGoogle Scholar
  49. Zhao Y, Luo F, Chen M, Wang Y, Xia J, Zhou F, Wang Y, Chen Y, Chen W (2019) evaluating multi-dimensional visualizations for understanding fuzzy clusters. IEEE Trans Vis Comput Graph 25(1):12–21CrossRefGoogle Scholar
  50. Zhou F, Li J, Huang W (2016) Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data. In: Proceedings of the IEEE Pacific visualization symposium. IEEE, pp 128–135Google Scholar
  51. Zhou Z, Ye Z, Liu Y, Liu F, Tao Y, Su W (2017a) Visual analytics for spatial clusters of air-quality data. IEEE Comput Graph Appl 37(5):98–105CrossRefGoogle Scholar
  52. Zhou F, Chen M, Wang Z (2017b) A Radviz-based visualization for understanding fuzzy clustering results. In: Proceedings of the international symposium on visual information communication and interaction, pp 9–15Google Scholar
  53. Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L (2019a) A survey of visualization for smart manufacturing. J Vis 22(1):1–19CrossRefGoogle Scholar
  54. Zhou Z, Meng L, Tang C, Zhao Y, Guo Z, Miaoxin H, Chen W (2019b) Visual abstraction of the large scale geospatial origin-destination movement Data. IEEE Trans Vis Comput Graph 25(1):43–53.  https://doi.org/10.1109/TVCG.2018.2864503 CrossRefGoogle Scholar
  55. Zuk T, Carpendale S (2006) Theoretical analysis of uncertainty visualizations. In: Proceedings of the international society for optical engineering, vol 6060, pp 606007–606014Google Scholar

Copyright information

© The Visualization Society of Japan 2019

Authors and Affiliations

  • Fangfang Zhou
    • 1
  • Bing Bai
    • 2
  • Yitao Wu
    • 1
  • Minghui Chen
    • 1
  • Zengsheng Zhong
    • 1
  • Rongchen Zhu
    • 1
  • Yi Chen
    • 3
  • Ying Zhao
    • 1
    Email author
  1. 1.School of Computer Science and EngineerCentral South UniversityChangshaChina
  2. 2.School of AutomationCentral South UniversityChangshaChina
  3. 3.Beijing Key Laboratory of Big Data Technology for Food SafetyBeijing Technology and Business UniversityBeijingChina

Personalised recommendations