Advertisement

Thermal diffusion interface inside a horizontal pipe flow compared between laminar and turbulent flow regimes

  • K. NakamuraEmail author
  • H. J. Park
  • Y. Murai
  • T. Takeuchi
Regular Paper
  • 2 Downloads

Abstract

A visualization of thermal diffusion in a horizontal pipe flow is conducted to elucidate the axial diffusion characteristics of two fluids of differing temperatures, particularly those flows between the laminar and turbulent flow regimes. Tracer particles are used to detect the thermal diffusion interface as well as to measure streamwise velocity profiles. We found that the Hagen–Poiseuille parabolic velocity profile established a long axial diffusion length that drives thermal convection in the pipe cross-sectional plane. This situation results in a 3D interface at Reynolds number, Re = 600, and a vertically stratified interface at Re = 1900. In turbulent flows at Re = 5700, an anti-diffusion spot appears in the front section before undergoing rapid mixing under turbulence. From the visualized particle images, the apparent axial coefficients of diffusion were measured and compared with the friction properties of the pipe. Furthermore, particle image velocimetry (PIV) explored the two-way coupling mechanism of between the temperature and the velocity within the thermal diffusion process.

Graphical abstract

Keywords

Pipe flow Flow transition Convection Diffusion interface Heat transfer Particle image velocimetry 

Notes

Acknowledgements

The authors thank the Fundamental Research Developing Association for Shipbuilding and Offshore (REDAS) for the financial support and Dr. Yuji Tasaka, Hokkaido University, for discussions on the physics of flow transition.

References

  1. Abraham JP, Sparrow EM, Tong JCK (2009) Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent. Int J Heat Mass Trans 52:557–563CrossRefzbMATHGoogle Scholar
  2. Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B (2011) The onset of turbulence in pipe flow. Science 333:192–196CrossRefzbMATHGoogle Scholar
  3. Barkley D (2016) Theoretical perspective on the route to turbulence in a pipe. J Fluid Mech 803:P1MathSciNetCrossRefzbMATHGoogle Scholar
  4. Batchelor GK (1976) Brownian diffusion of particles with hydrodynamic interaction. J Fluid Mech 74:1–29MathSciNetCrossRefzbMATHGoogle Scholar
  5. Boussinesq J (1891) Sur la manire don’t les vitesses, dans un tube cylindrique de section circulaire, vas son entre, se distribuent depuis cette entre jusqu’aux endroits o se trouve table un rgime uniforme. Comptes Rendus des Sances de l’Acad des Sci 113:9–15zbMATHGoogle Scholar
  6. Budanur NB, Hof B (2018) Complexity of the laminar-turbulent boundary in pipe flow. Phys Rev Fluids 3:054401CrossRefGoogle Scholar
  7. Darbyshire AG, Mullin T (1995) Transition to turbulence in constant-mass-flux pipe flow. J Fluid Mech 289:83–114CrossRefGoogle Scholar
  8. Draad A, Nieuwstadt F (1998) The earth’s rotation and laminar pipe flow. J Fluid Mech 361:297–308MathSciNetCrossRefzbMATHGoogle Scholar
  9. Flint LF, Eisenklam P (1969) Longitudinal gas dispersion in transitional and turbulent flow through a straight tube. Can J Chem Eng 47(2):101–106CrossRefGoogle Scholar
  10. Hof B, Juel A, Mullin T (2003) Scaling of the turbulence transition threshold in a pipe. Phys Rev Lett 91:244502CrossRefGoogle Scholar
  11. Hof B, Westerweel J, Schneider TM, Eckhardt B (2006) Finite lifetime of turbulence in shear flows. Nature 443:59–62CrossRefGoogle Scholar
  12. Kuik DJ, Poelma C, Westerweel J (2010) Quantitative measurement of the lifetime of localized turbulence in pipe flow. J Fluid Mech 645:529–539CrossRefzbMATHGoogle Scholar
  13. Matas JP, Morris JF, Guazelli E (2004) Inertial migration of rigid spherical particles in Poiseuille flow. J Fluid Mech 515:171–195CrossRefzbMATHGoogle Scholar
  14. Moody LF (1944) Friction factors for pipe flow. Trans ASME 66(8):671–684Google Scholar
  15. Mullin T (2011) Experimental studies of transition to turbulence in a pipe. Ann Rev Fluid Mech 43:1–24MathSciNetCrossRefzbMATHGoogle Scholar
  16. Nakamura K, Tasaka Y, Murai Y (2017) Effect of microbubbles on the creation of localized turbulence in a circular pipe flow. Jpn J Multiph Flow 31(1):20–28CrossRefGoogle Scholar
  17. Ohkubo J, Tasaka Y, Park HJ, Murai Y (2016) Extraction of 3D vortex structures from a turbulent puff in a pipe using two-color illumination and flakes. J Vis 19:1–9CrossRefGoogle Scholar
  18. Peixinho J, Mullin T (2006) Decay of turbulence in pipe flow. Phys Rev Lett 96:094501CrossRefGoogle Scholar
  19. Peixinho J, Mullin T (2007) Finite-amplitude thresholds for transition in pipe flow. J Fluid Mech 582:169–178CrossRefzbMATHGoogle Scholar
  20. Pfenninger W (1961) Boundary layer suction experiments with laminar flow at high Reynolds numbers in the inlet length of a tube by various suction methods. Bound Layer Flow Control 2:961–980CrossRefGoogle Scholar
  21. Prandtl L, Tietjens O (1931) Hydro-und Aeromechanik. Springer, BerlinzbMATHGoogle Scholar
  22. Puri AN, Kuo CY, Chapman RS (1983) Turbulent diffusion of mass in circular pipe flow. Appl Math Model 7:135–138CrossRefzbMATHGoogle Scholar
  23. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law resistance in parallel channels. Phil Trans R Soc London A 174:935–982CrossRefzbMATHGoogle Scholar
  24. Shatat MME, Yanase S, Takami T, Hyakutake T (2009) Drag reduction effects of micro-bubbles in straight and helical pipes. J Fluid Sci Technol 4:156–167CrossRefGoogle Scholar
  25. Shimizu M, Kida S (2009) A driving mechanism of a turbulent puff in a pipe flow. Fluid Dyn Res 41:045501CrossRefzbMATHGoogle Scholar
  26. Takeuchi T, Murai Y (2010) Flowmetering of natural gas pipeline by tracer gas pulse injection. Meas Sci Technol 21:015402CrossRefGoogle Scholar
  27. Takeuchi T, Ohkubo J, Yonezawa N, Oishi Y, Kumagai I, Tasaka Y, Murai Y (2016) Oil mist transport process in a long pipeline on turbulent flow transition region. Int J Multiph Flow 87:45–53CrossRefGoogle Scholar
  28. Tasaka Y, Schneider TM, Mullin T (2010) The folded edge of turbulence in a pipe. Phys Rev Lett 105:174502CrossRefGoogle Scholar
  29. Taylor GI (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc Royal Soc London A219:186–203Google Scholar
  30. Taylor GI (1954) Dispersion of matter in turbulent flow through a pipe. Proc Roy Soc London A223:446–468Google Scholar
  31. Tichacek LJ, Barkelew CH, Baron T (1957) Axial mixing in pipes. AIChE J 3(4):439–442CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2019

Authors and Affiliations

  • K. Nakamura
    • 1
    Email author
  • H. J. Park
    • 1
  • Y. Murai
    • 1
  • T. Takeuchi
    • 2
  1. 1.Laboratory for Flow Control, Faculty of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Pipeline Technology CenterTokyo Gas Co. LtdYokohamaJapan

Personalised recommendations