Advertisement

Journal of Visualization

, Volume 22, Issue 1, pp 79–93 | Cite as

Toward the better modeling and visualization of uncertainty for streaming data

  • Tan Tang
  • Kaijuan Yuan
  • Junxiu Tang
  • Yingcai WuEmail author
Regular Paper
  • 78 Downloads

Abstract

Streaming data can be found in many different scenarios, in which data are generated and arriving continuously. Sampling approaches have been proven as an effective means to cope with the sheer volume of the streaming data. However, sampling methods also introduce uncertainty, which can affect the reliability of subsequent analysis and visualization. In this paper, we propose a novel model called PDm and visualization named uncertainty tree to present uncertainty that arises from sampling streaming data. PDm is first introduced to characterize uncertainty of streaming data, and an optimization method is then proposed to minimize uncertainty. Uncertainty tree is further developed to enhance data understanding by visualizing uncertainty and revealing temporal patterns of streaming data. Lastly, a quantitative evaluation and real-world examples have been conducted to demonstrate the effectiveness and efficacy of the proposed techniques.

Graphical abstract

Keywords

Uncertainty visualization Streaming data Optimization Time-series data 

Notes

Acknowledgements

The work was supported by NSFC (61761136020, 61502416), NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization (U1609217), Zhejiang Provincial Natural Science Foundation (LR18F020001) and the 100 Talents Program of Zhejiang University. This project was also partially funded by Microsoft Research Asia.

References

  1. Cao N, Lin YR, Gotz D (2016) Untangle map: visual analysis of probabilistic multi-label data. IEEE Trans Vis Comput Graph 22(2):1149–1163CrossRefGoogle Scholar
  2. Chen H, Zhang S, Chen W, Mei H, Zhang J, Mercer A, Liang R, Qu H (2015) Uncertainty-aware multidimensional ensemble data visualization and exploration. IEEE Trans Vis Comput Graph 21(9):1072–1086CrossRefGoogle Scholar
  3. Correll M, Heer J (2016) Surprise! bayesian weighting for de-biasing thematic maps. IEEE Trans Vis Comput Graph 23(1):651–660CrossRefGoogle Scholar
  4. Crouser RJ, Franklin L, Endert A, Cook K (2017) Toward theoretical techniques for measuring the use of human effort in visual analytic systems. IEEE Trans Vis Comput Graph 23(1):121–130CrossRefGoogle Scholar
  5. Cui W, Liu S, Wu Z, Wei H (2014) How hierarchical topics evolve in large text corpora. IEEE Trans Vis Comput Graph 20(12):2281–2290CrossRefGoogle Scholar
  6. Efraimidis PS, Spirakis PG (2006) Weighted random sampling with a reservoir. Inf Process Lett 97(5):181–185MathSciNetCrossRefzbMATHGoogle Scholar
  7. Feng D, Kwock L, Lee Y, Taylor R (2010) Matching visual saliency to confidence in plots of uncertain data. IEEE Trans Vis Comput Graph 16(6):980–989CrossRefGoogle Scholar
  8. Freedman D, Robert P, Purves R (2007) Chance Errors in Sampling. In: Statistics, 4th edn. pp 355–374Google Scholar
  9. Gosink L, Bensema K, Pulsipher T, Obermaier H, Henry M, Childs H, Joy KI, Owhadi H, Scovel C, Sullivan T (2013) Characterizing and visualizing predictive uncertainty in numerical ensembles through bayesian model averaging. IEEE Trans Vis Comput Graph 19(12):2703–2712CrossRefGoogle Scholar
  10. Huron S, Vuillemot R, Fekete JD (2013) Visual sedimentation. IEEE Trans Vis Comput Graph 19(12):2446–2455CrossRefGoogle Scholar
  11. ISO (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurementGoogle Scholar
  12. Kim A, Blais E, Parameswaran A, Indyk P, Madden S, Rubinfeld R (2015) Rapid sampling for visualizations with ordering guarantees. Proc VLDB Endow 8(5):521–532CrossRefGoogle Scholar
  13. Liu M, Liu S, Zhu X, Liao Q, Wei F, Pan S (2016a) An uncertainty-aware approach for exploratory microblog retrieval. IEEE Trans Vis Comput Graph 22(1):250–259CrossRefGoogle Scholar
  14. Liu S, Yin J, Wang X, Cui W, Cao K, Pei J (2016b) Online visual analytics of text streams. IEEE Trans Vis Comput Graph 22(11):2451–2466CrossRefGoogle Scholar
  15. MacEachren AM (1992) Visualizing uncertain information. Cartogr Perspect 13:10–19CrossRefGoogle Scholar
  16. Mirzargar M, Whitaker RT, Kirby RM (2014) Curve boxplot: generalization of boxplot for ensembles of curves. IEEE Trans Vis Comput Graph 20(12):2654–2663CrossRefGoogle Scholar
  17. Pak CW, Foote H, Adams D, Cowley W, Thomas J (2003) Dynamic visualization of transient data streams. In: Proceedings of the IEEE symposium on information visualization, pp 97–104Google Scholar
  18. Pang AT, Wittenbrink CM, Lodha SK (1997) Approaches to uncertainty visualization. Vis Comput 13(8):370–390CrossRefGoogle Scholar
  19. Park Y, Cafarella M, Mozafari B (2016) Visualization-aware sampling for very large databases. In: 2016 IEEE 32nd international conference on data engineering (ICDE). IEEE, pp 755–766Google Scholar
  20. Potter K, Kniss J, Riesenfeld R, Johnson C (2010) Visualizing summary statistics and uncertainty. Comput Graph Forum 29(3):823–832CrossRefGoogle Scholar
  21. Potter K, Rosen P, Johnson CR (2012) From quantification to visualization: a taxonomy of uncertainty visualization approaches. IFIP Adv Inf Commun Technol 377:226–249CrossRefGoogle Scholar
  22. Schulz C, Nocaj A, Goertler J, Deussen O, Brandes U, Weiskopf D (2017) Probabilistic graph layout for uncertain network visualization. IEEE Trans Vis Comput Graph 23(1):531–540CrossRefGoogle Scholar
  23. Skeels M, Lee B, Smith G, Robertson G (2008) Revealing uncertainty for information visualization. In: Proceedings of the working conference on advanced visual interfaces, pp 376–379Google Scholar
  24. Tanahashi Y, Hsueh CH, Ma KL (2015) An efficient framework for generating storyline visualizations from streaming data. IEEE Trans Vis Comput Graph 21(6):730–742CrossRefGoogle Scholar
  25. Thomson J, Hetzler E, MacEachren A, Gahegan M, Pavel M (2005) A typology for visualizing uncertainty. Proc SPIE Vis Data Anal 5669:146CrossRefGoogle Scholar
  26. Vitter JS (1985) Random sampling with a reservoir. ACM Trans Math Softw 11(1):37–57MathSciNetCrossRefzbMATHGoogle Scholar
  27. Wan M, Chen X, Kaplan L, Han J, Gao J, Zhao B (2016) From truth discovery to trustworthy opinion discovery: an uncertainty-aware quantitative modeling approach. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 1885–1894Google Scholar
  28. Whitaker RT, Mirzargar M, Kirby RM (2013) Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Trans Vis Comput Graph 19(12):2713–2722CrossRefGoogle Scholar
  29. Wu Y, Wei F, Liu S, Au N, Cui W, Zhou H, Qu H (2010) OpinionSeer: interactive visualization of hotel customer feedback. IEEE Trans Vis Comput Graph 16(6):1109–1118CrossRefGoogle Scholar
  30. Wu Y, Yuan GX, Ma KL (2012) Visualizing flow of uncertainty through analytical processes. IEEE Trans Vis Comput Graph 18(12):2526–2535CrossRefGoogle Scholar
  31. Wu Y, Cao N, Gotz D, Tan YP, Keim DA (2016) A survey on visual analytics of social media data. IEEE Trans Multimed 18(11):2135–2148CrossRefGoogle Scholar
  32. Xu P, Mei H, Ren L, Chen W (2017) ViDX: visual diagnostics of assembly line performance in smart factories. IEEE Trans Vis Comput Graph 23(1):291–300CrossRefGoogle Scholar
  33. Zuk T, Carpendale S (2006) Theoretical analysis of uncertainty visualizations. In: Proceedings of the SPIE visualization and data analysis, vol 6060, p 606007-14Google Scholar
  34. Zuk T, Carpendale S (2007) Visualization of uncertainty and reasoning. Proc Int Symp Smart Graph 4569:164–177CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2018

Authors and Affiliations

  • Tan Tang
    • 1
  • Kaijuan Yuan
    • 1
  • Junxiu Tang
    • 1
  • Yingcai Wu
    • 1
    Email author
  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina

Personalised recommendations