Advertisement

Journal of Visualization

, Volume 22, Issue 1, pp 161–176 | Cite as

Visual analysis of haze evolution and correlation in Beijing

  • Wenting Zhang
  • Yinqiao Wang
  • Qiong ZengEmail author
  • Yunhai Wang
  • Guoning Chen
  • Tao Niu
  • Changhe Tu
  • Yi ChenEmail author
Regular Paper
  • 32 Downloads

Abstract

Haze is a hazardous atmospheric phenomenon that threatens human health and leads to severe economic problems. A number of weather factors are relevant to the emergence and evolvement of haze. In this paper, we present a visual analytics system for haze study, including its evolution and correlations to a number of weather factors. Specifically, we introduce a haze event detection algorithm based on common haze identification rules in meteorology using the PM2.5 concentration data. We develop a comparative visualization to consistently overview trends of scalar variables and wind directions, in which wind patterns are extracted via clustering streamlines at user-given sampling time. To study the correlation between wind and PM2.5, we decompose time steps into time intervals according to the temporal similarity of streamlines. Additionally, we develop a 1D function dissimilarity measurement to study the temporal correlation between PM2.5 concentrations and relevant weather factors, such as wind strength, relatively humidity and planetary boundary layer. Furthermore, we employ particle advection using pathline computation within the wind field to locate the origins and destinations of particles seeded in user-interested areas. We applied our system to study of a number of hazes occurring in January 2013 in Beijing, (China). Interpretations and evaluations from domain experts demonstrate the effectiveness of our system in facilitating haze study.

Graphical abstract

Keywords

Haze study Visual analysis Streamline 

Notes

Acknowledgements

This work is supported by the Grants of NSFC (61772315, 61602273), NSFC-Guangdong Joint Fund (U1501255), Shandong Provincial Natural Science Foundation (ZR2016FM12), the Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, and the Fundamental Research Funds of Shandong University.

References

  1. Berman F, Chien A, Cooper K, Dongarra J, Foster I, Gannon D, Johnsson L, Kennedy K, Kesselman C, Mellor-Crumme J (2001) The grads project: software support for high-level grid application development. Int J High Perform Comput Appl 15(4):327–344CrossRefGoogle Scholar
  2. Chen LWA, Chow JC, Doddridge BG, Dickerson RR, Ryan WF, Mueller PK (2003) Analysis of a summertime PM2. 5 and haze episode in the mid-atlantic region. J Air Waste Manag Assoc 53(8):946–956CrossRefGoogle Scholar
  3. Chen Y, Cohen JD, Krolik JH (2007) Similarity-guided streamline placement with error evaluation. IEEE Trans Vis Comput Graph 13(6):1448–1455CrossRefGoogle Scholar
  4. Ferreira N, Klosowski JT, Scheidegger CE, Silva CT (2013) Vector field k-means: clustering trajectories by fitting multiple vector fields. In: Proceedings of the 15th eurographics conference on visualization, EuroVis ’13, pp 201–210Google Scholar
  5. Government C (2012) People’s Republic of China ministry of environmental protection standard: technical regulation on ambient air quality index (chinese pdf). http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/W020120410332725219541.pdf/
  6. Günther T, Kuhn A, Kutz B, Theisel H (2013) Mass-dependent integral curves in unsteady vector fields. In: Proceedings of the 15th eurographics conference on visualization. EuroVis '13, vol 32. The Eurographs Association & John Wiley & Sons, Ltd., Chichester, UK, pp 211–220.  https://doi.org/10.1111/cgf.12108 Google Scholar
  7. Guo H, Yuan X, Huang J, Zhu X (2013) Coupled ensemble flow line advection and analysis. IEEE Trans Vis Comput Graph 19(12):2733–2742CrossRefGoogle Scholar
  8. Guo H, Hong F, Shu Q, Zhang J, Huang J, Yuan X (2014) Scalable Lagrangian-based attribute space projection for multivariate unsteady flow data. In: Pacific visualization symposium (PacificVis), 2014 IEEE, pp 33–40. IEEEGoogle Scholar
  9. Haby J (2010) The planetary boundary layer. http://www.theweatherprediction.com/basic/pbl/
  10. Hankin S, Harrison D, Osborne J, Davison J, O’Brien K (1996) A strategy and a tool, ferret, for closely integrated visualization and analysis. J Vis Comput Animat 7(3):149–157CrossRefGoogle Scholar
  11. Hibbard WL (1986) Computer-generated imagery for 4-d meteorological data. Bull Am Meteorol Soc 67(11):1362–1369CrossRefGoogle Scholar
  12. Hibbard B, Paul B (1998) vis5d. GNU Public Licenced software, University of Wisconsin Space Science and Engineering CenterGoogle Scholar
  13. Houze RA Jr (2014) Cloud dynamics, vol 104. Academic press, San DiegoGoogle Scholar
  14. Janicke H, Bottinger M, Mikolajewicz U, Scheuermann G (2009) Visual exploration of climate variability changes using wavelet analysis. IEEE Trans Vis Comput Graph 15(6):1375–1382CrossRefGoogle Scholar
  15. Kang CM, Lee HS, Kang BW, Lee SK, Sunwoo Y (2004) Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in seoul, South Korea. Atmos Environ 38(28):4749–4760CrossRefGoogle Scholar
  16. Kehrer J, Ladstadter F, Muigg P, Doleisch H, Steiner A, Hauser H (2008) Hypothesis generation in climate research with interactive visual data exploration. IEEE Trans Vis Comput Graph 14(6):1579–1586CrossRefGoogle Scholar
  17. Kehrer J, Muigg P, Doleisch H, Hauser H (2011) Interactive visual analysis of heterogeneous scientific data across an interface. IEEE Trans Vis Comput Graph 17(7):934–946CrossRefGoogle Scholar
  18. Ladstadter F, Steiner AK, Lackner BC, Pirscher B, Kirchengast G, Kehrer J, Hauser H, Muigg P, Doleisch H (2010) Exploration of climate data using interactive visualization. J Atmos Ocean Technol 27(4):667–679CrossRefGoogle Scholar
  19. Li J, Xiao Z, Zhao HQ, Meng ZP, Zhang K (2016) Visual analytics of smogs in China. J Vis 19(3):461–474CrossRefGoogle Scholar
  20. Lu K, Chaudhuri A, Lee TY, Shen HW, Wong PC (2013) Exploring vector fields with distribution-based streamline analysis. In: Proceeding of PacificVis ’13: IEEE pacific visualization symposium, Sydney, AustraliaGoogle Scholar
  21. Malm WC (1992) Characteristics and origins of haze in the continental United States. Earth Sci Rev 33(1):1–36CrossRefGoogle Scholar
  22. McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Comput Graphics Forum 29(6):1807.  https://doi.org/10.1111/j.1467-8659.2010.01650.x CrossRefGoogle Scholar
  23. McLoughlin T, Jones MW, Laramee RS, Malki R, Masters I, Hansen CD (2013) Similarity measures for enhancing interactive streamline seeding. IEEE TVCG 19(8):1342–1353Google Scholar
  24. Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W (2004) The weather research and forecast model: software architecture and performance. In: Proceedings of the 11th ECMWF workshop on the use of high performance computing in meteorology, vol 25, p 29Google Scholar
  25. Nocke T, Sterzel T, Bottinger M, Wrobel M (2008) Visualization of climate and climate change data: an overview. In: Digital earth summit on geoinformatics, pp 226–232Google Scholar
  26. Pobitzer A, Lez A, Matkovic K, Hauser H (2012) A statistics-based dimension reduction of the space of path line attributes for interactive visual flow analysis. In: PacificVis, pp 113–120Google Scholar
  27. Potter K, Wilson A, Bremer PT, Williams D, Doutriaux C, Pascucci V, Johhson CR (2009) Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather forecast data with integrated visus-cdat systems. In: Proceedings of SciDAC 2009, journal of physics: conference series, vol 180, p (published online)Google Scholar
  28. Qu H, Chan WY, Xu A, Chung KL, Lau KH, Guo P (2007) Visual analysis of the air pollution problem in Hong Kong. IEEE Trans Vis Comput Graph 13(6):1408–1415CrossRefGoogle Scholar
  29. RenHe Z, Li Q, Zhang R (2014) Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci China Earth Sci 57(1):26–35CrossRefGoogle Scholar
  30. Sanyal J, Zhang S, Dyer J, Mercer A, Amburn P, Moorhead RJ (2010) Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans Vis Comput Graph 16(6):1421–1430CrossRefGoogle Scholar
  31. Schichtel BA, Husar RB, Falke SR, Wilson WE (2001) Haze trends over the United States, 1980–1995. Atmos Environ 35(30):5205–5210CrossRefGoogle Scholar
  32. Shi K, Theisel H, Hauser H, Weinkauf T, Matkovic K, Hege HC, Seidel HP (2009) Path line attributes - an information visualization approach to analyzing the dynamic behavior of 3D time-dependent flow fields. In: Hege H-C, Polthier K, Scheuermann G (eds) Topology-based methods in visualization II. Springer, Berlin, pp 75–88CrossRefGoogle Scholar
  33. Stigler SM (1989) Francis Galton’s account of the invention of correlation. Stat Sci 4:73–79MathSciNetCrossRefzbMATHGoogle Scholar
  34. Sun Y, Zhuang G, Tang A, Wang Y, An Z (2006) Chemical characteristics of PM2. 5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol 40(10):3148–3155CrossRefGoogle Scholar
  35. Sun Y, Jiang Q, Wang Z, Fu P, Li J, Yang T, Yin Y (2014) Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J Geophys Res Atmos 119(7):4380–4398CrossRefGoogle Scholar
  36. Tominski C, Donges JF, Nocke T (2011) Information visualization in climate research. In: 2011 15th international conference on information visualisation (IV), pp 298–305. IEEEGoogle Scholar
  37. Treinish LA (1994) Severe rainfall events in northwestern peru (visualization of scattered meteorological data). In: IEEE conference on visualization, 1994., Visualization’94, Proceedings., pp 350–354, CP38. IEEEGoogle Scholar
  38. Wang X, Bi X, Sheng G, Fu J (2006) Chemical composition and sources of PM10 and PM2. 5 aerosols in Guangzhou, China. Environ Monitor Assess 119(1–3):425–439CrossRefGoogle Scholar
  39. Wang L, Zhang N, Liu Z, Sun Y, Ji D, Wang Y (2014a) The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing–Tianjin–Hebei region during January 2013. Adv Meteorol 2014:1–14Google Scholar
  40. Wang Y, Yao L, Wang L, Liu Z, Ji D, Tang G, Zhang J, Sun Y, Hu B, Xin J (2014b) Mechanism for the formation of the January 2013 heavy haze pollution episode over Central and Eastern China. Sci China Earth Sci 57(1):14–25CrossRefGoogle Scholar
  41. Wang YH, Fan CR, Zhang J, Niu T, Zhang S, Jiang JR (2015) Forecast verification and visualization based on Gaussian mixture model co-estimation. Comput Graph Forum 34(6):99–110CrossRefGoogle Scholar
  42. Wang F, Chen W, Zhao Y, Gu T, Gao S, Bao H (2017) Adaptively exploring population mobility patterns in flow visualization. IEEE Trans Intell Transp Syst 18(8):2250–2259CrossRefGoogle Scholar
  43. Yu H, Wang C, Shene CK, Chen JH (2012) Hierarchical streamline bundles. IEEE Trans Vis Comput Graph 18(8):1353–1367CrossRefGoogle Scholar
  44. Zhou Z, Ye Z, Liu Y, Liu F, Tao Y, Su W (2017) Visual analytics for spatial clusters for air-quality data. IEEE Comput Graph Appl 37(5):98–105CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2018

Authors and Affiliations

  • Wenting Zhang
    • 1
  • Yinqiao Wang
    • 1
  • Qiong Zeng
    • 1
    Email author
  • Yunhai Wang
    • 1
  • Guoning Chen
    • 2
  • Tao Niu
    • 3
  • Changhe Tu
    • 1
  • Yi Chen
    • 4
    Email author
  1. 1.Shandong UniversityQingdaoChina
  2. 2.University of HoustonHoustonUSA
  3. 3.Chinese Academy of Meteorological SciencesBeijingChina
  4. 4.Beijing Technology and Business UniversityBeijingChina

Personalised recommendations