Advertisement

Journal of Visualization

, Volume 18, Issue 4, pp 619–629 | Cite as

Visualization of supersonic flow around a sharp-edged, sub-boundary-layer protuberance

  • Frank K. LuEmail author
Regular Paper

Abstract

Innovations in conventional surface and planar laser scattering visualizations revealed complex structures in the Mach 2.5 flow past a sharp-edged, sub-boundary-layer ramp with swept sides that is one type of micro vortex generator (MVG). The incoming flow separated over the leading edge despite the ramp angle being below the threshold for incipient separation. The separation produced a weak trailing horseshoe vortex system. The flow over the top of the MVG separated off the slant edges to produce a large primary vortex pair. Extra details were revealed at the trailing edge with at least two pairs of singularities. Vortex filaments spring from these singularities. Symmetry breaking from the confluence of the two primary vortices was observed as an unsteady wake to result in a train of possibly ring or hairpin vortices trailing downstream.

Graphical Abstract

Keywords

Protuberance Flow topology Viscous–inviscid interaction Flow visualization 

Notes

Acknowledgments

The author thanks Adam Pierce and Yusi Shih for their assistance with the experiments, and Prof. Chaoqun Liu and Dr. Qin Li for their insightful comments. Support of the research by an AFOSR Grant No. FA9550-08-1-0201 monitored by Dr. John Schmisseur is gratefully acknowledged.

Supplementary material

Supplementary material 1 (wmv 5474 KB)

Supplementary material 2 (wmv 8325 KB)

Supplementary material 3 (wmv 8568 KB)

Supplementary material 4 (wmv 18403 KB)

References

  1. Angele KP, Grewe F (2007) Instantaneous behavior of streamwise vortices for turbulent boundary layer separation control. J Fluids Eng 129(2):226–235. doi: 10.1115/1.2409327 CrossRefGoogle Scholar
  2. Babinsky H, Li Y (2009) Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA J 47(3):668–675. doi: 10.2514/1.38022 CrossRefGoogle Scholar
  3. Blinde PL, Humble RA, van Oudheusden BW, Scarano F (2009) Effects of micro-ramps on a shock wave/turbulent boundary layer interaction. Shock Waves 19(6):507–520. doi: 10.1007/s00193-009-0231-9 CrossRefGoogle Scholar
  4. Bur R, Coponet D, Carpels Y (2009) Separation control by vortex generator devices in a transonic channel flow. Shock Waves 19(6):521–530. doi: 10.1007/s00193-009-0234-6 CrossRefGoogle Scholar
  5. Clemens NT, Mungal MG (1991) A planar Mie scattering technique for visualizing supersonic mixing flows. Exp Fluids 11(2–3):175–185. doi: 10.1007/BF00190296 Google Scholar
  6. Elfstrom GM (1972) Turbulent hypersonic flow at a wedge-compression corner. J Fluid Mech 53(1):113–127. doi: 10.1017/S0022112072000060 CrossRefGoogle Scholar
  7. Herges T, Kroeker E, Elliott G, Dutton C (2010) Microramp flow control of normal shock/boundary-layer interactions. AIAA J 48(11):2529–2542. doi: 10.2514/1.52434 CrossRefGoogle Scholar
  8. Kleine H (2010) Filming the invisible—time-resolved visualization of compressible flows. Euro Phys J Spec Top 182:3–34. doi: 10.1140/epjst/e2010-01223-2 CrossRefGoogle Scholar
  9. Li Q, Liu C (2010) Declining angle effects of the trailing edge of a microramp vortex generator. J Aircr 47(6):2086–2095. doi: 10.2514/1.52854 CrossRefGoogle Scholar
  10. Lim TT (1997) On the role of Kelvin–Helmholtz-like instability in the formation of turbulent vortex rings. Fluid Dyn Res 21(1):47–56. doi: 10.1016/S0169-5983(96)00059-7 CrossRefGoogle Scholar
  11. Lu FK, Li Q, Liu C (2012) Micro vortex generators in high-speed flow. Prog Aerosp Sci 53:30–45. doi: 10.1016/j.paerosci.2012.03.003 CrossRefGoogle Scholar
  12. Lu F K, Pierce A J, Shih Y, Liu C, Li Q (2010) Experimental and numerical study of flow topology past micro-vortex generators. 40th AIAA Fluid Dyn Conf Exhib, Chicago, Illinois, AIAA pp 2010–4463Google Scholar
  13. Merzkirch W (1987) Flow visualization. Academic, OrlandozbMATHGoogle Scholar
  14. Pierce AJ, Lu FK (2009) Laser alignment method for portable schlieren system. 39th AIAA Fluid Dyn Conf, San Antonio, Texas, AIAA pp 2009–3574Google Scholar
  15. Pierce A J, Lu F K, Bryant D S, and Shih Y (2010) New developments in surface oil flow visualization. 27th AIAA Aerodyn Meas Ground Test Conf, Chicago, Illinois. AIAA pp 2010–4353Google Scholar
  16. Pierce AJ, Lu FK (2011) New seeding and surface treatment methods for particle image velocimetry. 49th AIAA Aerosp Sci Meet, Orlando, Florida. AIAA pp 2011–1164Google Scholar
  17. Sedney R (1973) A survey of the effects of small protuberances on boundary-layer flows. AIAA J 11(6):782–792. doi: 10.2514/3.50520 CrossRefGoogle Scholar
  18. Settles GS (1986) Modern developments in flow visualization. AIAA J 24(8):1313–1323. doi: 10.2514/3.9437 CrossRefGoogle Scholar
  19. Settles GS, Bogdonoff SM, Vas IE (1976) Incipient separation of a supersonic turbulent boundary layer at high Reynolds numbers. AIAA J 14(1):50–56. doi: 10.2514/3.61331 CrossRefGoogle Scholar
  20. Settles GS, Dolling DS (1986) Swept shock wave–boundary layer interactions. In: Hemsch MJ, Nielsen JN (eds) Tactical missile aerodynamics. AIAA, New York, pp 297–379Google Scholar
  21. Squire LC (1961) The motion of a thin oil sheet under the steady boundary layer on a body. J Fluid Mech 11(2):161–179. doi: 10.1017/S0022112061000445 zbMATHMathSciNetCrossRefGoogle Scholar
  22. Sun Z, Schrijer FFJ, Scarano F, van Oudheusden BW (2012) The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer. Phys Fluids 24(5):055105. doi: 10.1063/1.4711372 CrossRefGoogle Scholar
  23. Tobak M, Peake DJ (1982) Topology of three-dimensional separated flows. Annu Rev Fluid Mech 14:61–85. doi: 10.1146/annurev.fl.14.010182.000425 MathSciNetCrossRefGoogle Scholar
  24. Wang B, Liu W, Zhao Y, Fan X, Wang C (2012) Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control. Phys Fluids 24(5):055110. doi: 10.1063/1.4719146 CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2015

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering Department, Aerodynamics Research CenterUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations