Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields

  • 22 Accesses


New substrates and fermentation conditions have been drawing researchers’ attention to increase the bioethanol productivity. The aim of this study was to evaluate the acid hydrolysis of Spirulina biomass and its use in association with molasses in ethanol production with and without magnetic field (MF) application. Hydrothermal hydrolysis of Spirulina biomass hydrolysis was evaluated. The highest reducing sugar concentration (79% w w−1) was obtained with sulfuric acid 5% (v v−1), 121 °C, 30 min, and 500 g L−1 of biomass. This hydrolyzed biomass and molasses were used as substrates in the alcoholic fermentation with Saccharomyces cerevisiae by varying the biomass/molasses (B/M) ratio: 25, 50, and 75% (v v−1). The medium 25% B/M had higher ethanol yield at 78.9% and productivity of 0.72 g L−1 h−1. MF application did not increase the cell growth and ethanol production. This is the first study that integrates molasses and microalgal biomass substrates for ethanol production and presents some new information about magnetic fields application that is still little explored in the literature.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Oey, M., Sawyer, A.L., Ross, I.L., Hankamer, B.: Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol. J. 14, 1487–1499 (2016). https://doi.org/10.1111/pbi.12516

  2. 2.

    Jiang, X., Guan, D.: Determinants of global CO2 emissions growth. Appl. Energy. 184, 1132–1141 (2016). https://doi.org/10.1016/j.apenergy.2016.06.142

  3. 3.

    Tollefson, J.: Global industrial carbon emissions to reach all-time high in 2018. Nature (2018). https://doi.org/10.1038/d41586-018-07666-6

  4. 4.

    Hossain, M.N.B., Basu, J.K., Mamun, M.: The production of ethanol from micro-algae Spirulina. Procedia Eng 105, 733–738 (2015). https://doi.org/10.1016/j.proeng.2015.05.064

  5. 5.

    Guo, M., Song, W., Buhain, J.: Bioenergy and biofuels: history, status, and perspective. Renew. Sustain. Energy Rev. 42, 712–725 (2015). https://doi.org/10.1016/j.rser.2014.10.013

  6. 6.

    Şerbetçioğlu Sert, B., İnan, B., Özçimen, D.: Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chim. Slov. 65, 160–165 (2018). https://doi.org/10.17344/acsi.2017.3728

  7. 7.

    Muruaga, M.L., Carvalho, K.G., Domínguez, J.M., de Souza Oliveira, R.P., Perotti, N.: Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: studies of scale up in bioreactor. Renew. Energy. 85, 649–656 (2016). https://doi.org/10.1016/j.renene.2015.07.008

  8. 8.

    He, J., Wu, A.M., Chen, D., Yu, B., Mao, X., Zheng, P., Yu, J., Tian, G.: Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium. Biotechnol. Biofuels. 7, 1–9 (2014). https://doi.org/10.1186/1754-6834-7-43

  9. 9.

    Markou, G., Angelidaki, I., Nerantzis, E., Georgakakis, D.: Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies. 6, 3937–3950 (2013). https://doi.org/10.3390/en6083937

  10. 10.

    Sivaramakrishnan, R., Incharoensakdi, A.: Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel 217, 458–466 (2018). https://doi.org/10.1016/j.fuel.2017.12.119

  11. 11.

    Farias Silva, C.E., Bertucco, A.: Dilute acid hydrolysis of microalgal biomass for bioethanol production: an accurate kinetic model of biomass solubilization, sugars hydrolysis and nitrogen/ash balance. React. Kinet. Mech. Catal. 122, 1115 (2017). https://doi.org/10.1007/s11144-017-1271-2

  12. 12.

    Hamouda, R.A., Sherif, S.A., Ghareeb, M.M.: Bioethanol production by various hydrolysis and fermentation processes with micro and macro green algae. Waste Biomass Valoriz. 9, 1495–1501 (2018). https://doi.org/10.1007/s12649-017-9936-7

  13. 13.

    John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A.: Bioresource technology micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186–193 (2011). https://doi.org/10.1016/j.biortech.2010.06.139

  14. 14.

    Chia, S.R., Chew, K.W., Show, P.L., Xia, A., Ho, S.H., Lim, J.W.: Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresour. Technol. 289, 121727 (2019). https://doi.org/10.1016/j.biortech.2019.121727

  15. 15.

    Costa, J.A.V., Freitas, B.C.B., Rosa, G.M., Moraes, L., Morais, M.G., Mitchell, B.G.: Operational and economic aspects of Spirulina-based biorefinery. Bioresour. Technol. 292, 121946 (2019). https://doi.org/10.1016/j.biortech.2019.121946

  16. 16.

    Salla, A.C.V., Margarites, A.C., Seibel, F.I., Holz, L.C., Brião, V.B., Bertolin, T.E., Colla, L.M., Costa, J.A.V.: Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour. Technol. 209, 133–141 (2016). https://doi.org/10.1016/j.biortech.2016.02.069

  17. 17.

    Rosa, G.M., Moraes, L., Cardias, B.B., Souza, M., Costa, J.A.V.: Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour. Technol. 192, 321–327 (2015). https://doi.org/10.1016/j.biortech.2015.05.020

  18. 18.

    Cardias, B.B., de Morais, M.G., Costa, J.A.V.: CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition. Bioresour. Technol. 267, 77–83 (2018). https://doi.org/10.1016/j.biortech.2018.07.031

  19. 19.

    Miranda, J.R., Passarinho, P.C., Gouveia, L.: Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour. Technol. 104, 342–348 (2012). https://doi.org/10.1016/j.biortech.2011.10.059

  20. 20.

    Albuquerque, W.W.C., Costa, R.M.P.B., de Salazar e Fernandes, T., Porto, A.L.F.: Evidences of the static magnetic field influence on cellular systems. Prog. Biophys. Mol. Biol. 121, 16–28 (2016). https://doi.org/10.1016/j.pbiomolbio.2016.03.003

  21. 21.

    Cakmak, T., Dumlupinar, R., Erdal, S.: Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 31, 120–129 (2010). https://doi.org/10.1002/bem.20537

  22. 22.

    Deamici, K.M., Cardias, B.B., Costa, J.A.V., Santos, L.O.: Static magnetic fields in culture of Chlorella fusca: bioeffects on growth and biomass composition. Process Biochem. 51, 912–916 (2016). https://doi.org/10.1016/j.procbio.2016.04.005

  23. 23.

    Wan, Y., Zhang, J., Han, H., Li, L., Liu, Y., Gao, M.: Citrinin-producing capacity of Monascus purpureus in response to low—frequency magnetic fields. Process Biochem. 53, 25–29 (2017). https://doi.org/10.1016/j.procbio.2016.11.009

  24. 24.

    Santos, L.O., Alegre, R.M., Garcia-Diego, C., Cuellar, J.: Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 45, 1362–1367 (2010). https://doi.org/10.1016/j.procbio.2010.05.008

  25. 25.

    Berlot, M., Rehar, T., Fefer, D., Berovic, M.: The influence of treatment of Saccharomyces cerevisiae inoculum with a magnetic field on subsequent grape must fermentation. Chem. Biochem. Eng. Q. 27, 423–429 (2013)

  26. 26.

    Deutmeyer, A., Raman, R., Murphy, P., Pandey, S.: Effect of magnetic field on the fermentation kinetics of Saccharomyces cerevisiae. Adv. Biosci. Biotechnol. 02, 207–213 (2011). https://doi.org/10.4236/abb.2011.24031

  27. 27.

    Lopes, P., Borzani, W., Rordrigues, J.A., Ratusznei, S.M.: Influência de campo magnético na fermentação alcoólica descontínua. Brazilian J. Food Technol. 13, 38–51 (2010). https://doi.org/10.4260/BJFT2010130100006

  28. 28.

    Motta, M.A., Muniz, J.B.F., Schuler, A., da Motta, M.: Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol. Prog. 20, 393–396 (2004). https://doi.org/10.1021/bp034263j

  29. 29.

    Pothakamury, U.R., Barbosa, G., Swanson, B.: Magnetic-field inactivation of microorganisms and generation of biological changes. Food Technol. 47, 85–93 (1993)

  30. 30.

    Moncada, J., Tamayo, J.A., Cardona, C.A.: Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery. Chem. Eng. Sci. 118, 126–140 (2014). https://doi.org/10.1016/j.ces.2014.07.035

  31. 31.

    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.: Protein determination with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/0304-3894(92)87011-4

  32. 32.

    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017

  33. 33.

    Folch, J., Lees, M., Stanley, H.S.: A simple method for the isolation and purification of total lipides from animal tissue. J. Biol. Chem. 226, 497–509 (1957). https://doi.org/10.1016/j.ultrasmedbio.2011.03.005

  34. 34.

    AOAC: Official Methods of Analysis, Association of Analytical Chemists, 15th edn. Washington DC: AOAC, pp. 141–144 (2000). DOI: 10.1007/978-3-642-31241-0.

  35. 35.

    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

  36. 36.

    Margarites, A.C.F.: Carbohydrate synthesis by microalgae and production of bioethanol (2014). https://repositorio.furg.br/handle/1/6291

  37. 37.

    Sumbhate, S., Nayak, S., Goupale, D., Tiwari, A., Jadon, R.S.: Colorimetric method for the estimation of ethanol in alcoholic-drinks. J. Anal. Tech. 1, 1–6 (2012)

  38. 38.

    Veana, F., Martínez-Hernández, J.L., Aguilar, C.N., Rodríguez-Herrera, R., Michelena, G.: Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian J. Microbiol. 45, 373–377 (2014). https://doi.org/10.1590/S1517-83822014000200002

  39. 39.

    Arshad, M., Hussain, T., Iqbal, M., Abbas, M.: Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Braz. J. Microbiol. 48, 403–409 (2017). https://doi.org/10.1016/j.bjm.2017.02.003.

  40. 40.

    Shokrkar, H., Ebrahimi, S., Zamani, M.: Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200, 380–386 (2017). https://doi.org/10.1016/j.fuel.2017.03.090

  41. 41.

    Harun, R., Danquah, M.K.: Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 46, 304–309 (2011). https://doi.org/10.1016/j.procbio.2010.08.027

  42. 42.

    Silva, B.V., Silveira Mastrantonio, D.J., Costa, J.A.V., de Morais, M.G.: Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Bioresour. Technol. 269, 221–226 (2018). https://doi.org/10.1016/j.biortech.2018.08.105

  43. 43.

    Cazetta, M.L., Celligoi, M.A.P.C., Buzato, J.B., Scarmino, I.S.: Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour. Technol. 98, 2824–2828 (2007). https://doi.org/10.1016/j.biortech.2006.08.026

  44. 44.

    Nurhayati, J., Mayzuhroh, A., Arindhani, S., Caroenchai, C.: Studies on bioethanol production of commercial baker’s and alcohol yeast under aerated culture using sugarcane molasses as the media. Agric. Agric. Sci. Procedia. 9, 493–499 (2016). https://doi.org/10.1016/j.aaspro.2016.02.168

  45. 45.

    Motta, M.A., Montenegro, E.J.N., Stamford, T.L.M., Silva, A.R., Silva, F.R.: Changes in Saccharomyces cerevisiae development induced by magnetic fields. Biotechnol. Prog. 17, 970–973 (2001). https://doi.org/10.1021/bp010076e

  46. 46.

    Erasmus, D.J., Cliff, M., Van Vuuren, H.J.J.: Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine. Am. J. Enol. Vitic. 55, 371–378 (2004)

  47. 47.

    Hristov, J., Perez, V.: Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng. 3(1), 1–18 (2011)

Download references


The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) (Grant No. Finance Code 001), the National Council for Scientific and Technological Development (CNPq), the Ministry of Science, Technology, Innovations, and Communication (MCTIC), and the Student Development Program (PDE/FURG) for the financial support provided, as well as the Fundação André Tosello for providing the yeast strain.

Author information

Correspondence to Lucielen Oliveira Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cardias, B.B., Trevisol, T.C., Bertuol, G.G. et al. Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-00966-x

Download citation


  • Bioethanol
  • Biomass valorization
  • Microalgae
  • Saccharomyces cerevisiae
  • Sugarcane