Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Start-Up Strategy and Process Performance of Semi-Continuous Anaerobic Digestion of Raw Sugarcane Vinasse

  • 15 Accesses

Abstract

The sugarcane distillery waste water is generated throughout the sugarcane molasses fermentation and distillation. In Reunion Island, a part of the vinasse production is treated by methanisation process. However, the remaining part is diluted then discharged into the sea. The aim of this work is to study the anaerobic treatment of sugar cane vinasse, with energy recovery. Nonetheless, vinasse pollutant load is difficult to treat. Regarding the experimentations, the biochemical potential (BMP) test is used for the determination of the methanogen potential. The BMP is then modelled with the modified Gompertz and the first order kinetic models. Furthermore, a laboratory study is carried out for studying the methane production of vinasse in semi-industrial scale over a period of 130 days. The start-up strategy of the 16 L pilot is proposed, in particular the gradual increase of organic load. The physico-chemical analysis of the medium is needed to prevent and explain the failure of the process. Indeed, the biogas production and physico-chemical measurements during the digestion are presented and discussed. The maximum methane yield of the BMP is 185 \({\text{NL}}_{{{\text{CH}}_{4} }} \,{\text{kg}}_{{{\text{COD}}}}^{ - 1} ,\) obtained with I/S ratio in terms of volatile solids of 0.7. The outcomes showed that the first-order kinetic and modified Gompertz models fit well with the BMP test curves. Concerning the pilot, the start-up period lasted 45 days the maximum specific production was 151.00 \({\text{NL}}_{{{\text{CH}}_{4} }} \,{\text{kg}}_{{{\text{COD}}}}^{ - 1}\) (232.31 \({\text{NL}}_{{{\text{biogas}}}} \,{\text{kg}}_{{{\text{COD}}}}^{ - 1}\)). In further studies, different mixing strategies will be studied.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bastide, G.: Fiche technique-méthanisation. Service Prévention et Gestion des Déchets Direction Consommation Durable et Déchets, ADEME Angers (2015)

  2. 2.

    Farinet, J.-L.: La méthanisation à la Réunion. Compte rendu de mission du 15 au 23 septembre 2010: perspectives et enjeux de recherche. Appui technique au programme PILMO (2010)

  3. 3.

    Chowdhury, Z.Z., Hamid, S.B.A.: Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. Bioresources 11:3397–3415 (2016). https://doi.org/10.15376/biores.11.2.3397-3415

  4. 4.

    Chowdhury, Z.Z., Chandran, R.R.R., Jahan, A., Khalid, K., Rahman, M.M., Al-Amin, M., Akbarzadeh, O., Badruddin, I.A., Khan, T.M.Y., Kamangar, S., Hamizi, N.A.B., Wahab, Y.A., Johan, R.B., Adebisi, G.A.: Extraction of cellulose nano-whiskers using ionic liquid-assisted ultra-sonication: optimization and mathematical modelling using Box-Behnken design. Symmetry 11, 1148 (2019). https://doi.org/10.3390/sym11091148

  5. 5.

    Abd Hamid, S.B., Chowdhury, Z.Z., Karim, Md.Z., Ali, Md.E.: Catalytic isolation and physicochemical properties of nanocrystalline cellulose (NCC) using HCl–FeCl3 system combined with ultrasonication. Bioresources 11:3840–3855 (2016). https://doi.org/10.15376/biores.11.2.3840-3855

  6. 6.

    Ramos-Vaquerizo, F., Cruz-Salomón, A., Ríos-Valdovinos, E., Pola-Albores, F., Lagunas-Rivera, S.: Anaerobic treatment of vinasse from sugarcane ethanol production in expanded granular sludge bed bioreactor. J. Chem. Eng. Process Technol. 9, 3 (2018).

  7. 7.

    Cruz-Salomón, A., Ríos-Valdovinos, E, Pola-Albores, F., Meza-Gordillo, R., Lagunas-Rivera, S., Ruíz-Valdiviezo, V.M.: Anaerobic treatment of agro-industrial wastewaters for COD removal in expanded granular sludge bed bioreactor. Biofuel Res. J 4:715–720 (2017). https://doi.org/10.18331/BRJ2017.4.4.3

  8. 8.

    Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffiere, P., Carballa, M., de Wilde, V., Ebertseder, F., Fernandez, B., Ficara, E., Fotidis, I., Frigon, J.-C., de Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Rusch Pfund, F., Stromberg, S., Torrijos, M., van Eekert, M., van Lier, J., Wedwitschka, H., Wierinck, I.: Towards a standardization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522 (2016). https://doi.org/10.2166/wst.2016.336

  9. 9.

    Janke, L., Leite, A.F., Nikolausz, M., Radetski, C.M., Nelles, M., Stinner, W.: Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse. Waste Manag. 48, 199–208 (2016). https://doi.org/10.1016/j.wasman.2015.11.007

  10. 10.

    Budiyono, B., Syaichurrozi, I., Sumardiono, S.: Effect of total solid content to biogas production rate from vinasse. Int. J. Eng. (2014). https://doi.org/10.5829/idosi.ije.2014.27.02b.02

  11. 11.

    Moraes, B.S., Triolo, J.M., Lecona, V.P., Zaiat, M., Sommer, S.G.: Biogas production within the bioethanol production chain: use of co-substrates for anaerobic digestion of sugar beet vinasse. Bioresour. Technol. 190, 227–234 (2015). https://doi.org/10.1016/j.biortech.2015.04.089

  12. 12.

    de Barros, V.G., Duda, R.M., de Oliveira, R.A.: Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Braz. J. Microbiol. 47, 628–639 (2016). https://doi.org/10.1016/j.bjm.2016.04.021

  13. 13.

    López González, L.M., Pereda Reyes, I., Romero Romero, O.: Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Manag. 68, 139–145 (2017). https://doi.org/10.1016/j.wasman.2017.07.016

  14. 14.

    Caillet, H., Lebon, E., Akinlabi, E., Madyira, D., Adelard, L.: Influence of inoculum to substrate ratio on methane production in Biochemical Methane Potential (BMP) tests of sugarcane distillery waste water. Procedia Manuf. 35, 259–264 (2019). https://doi.org/10.1016/j.promfg.2019.05.037

  15. 15.

    Kim, H.-W., Han, S.-K., Shin, H.-S.: The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manag. Res. 21, 515–526 (2003)

  16. 16.

    Llabres-Luengo, P., Mata-Alvarez, J.: Kinetic study of the anaerobic digestion straw-pig manure mixtures. Biomass 14, 129–142 (1987)

  17. 17.

    Nielfa, A., Cano, R., Fdz-Polanco, M.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 5, 14–21 (2015). https://doi.org/10.1016/j.btre.2014.10.005

  18. 18.

    Lay, J.-J., Li, Y.-Y., Noike, T.: Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 31, 1518–1524 (1997)

  19. 19.

    Vavilin, V.A., Angelidaki, I.: Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnol. Bioeng. 89, 113–122 (2005). https://doi.org/10.1002/bit.20323

  20. 20.

    Jiménez, A.M., Borja, R., Martı́n A.: Aerobic–anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem. 38, 1275–1284 (2003). https://doi.org/10.1016/S0032-9592(02)00325-4

  21. 21.

    Iqbal Syaichurrozi, B., Sumardiono, S.: Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model. Res. J. Appl. Sci. Eng. Technol. 7:2798–2805 (2014). https://doi.org/10.19026/rjaset.7.602

  22. 22.

    Bollon, J.: Etude des mécanismes physiques et de leur influence sur la cinétique de méthanisation en voie sèche: essais expérimentaux et modélisation (2012). https://www.theses.fr/2012ISAL0011. Accessed 10 Feb 2017

  23. 23.

    Zhao, H.: Analysis of the performance of an anaerobic digestion system at the Regina Wastewater Treatment Plant. Bioresour. Technol. 95, 301–307 (2004). https://doi.org/10.1016/j.biortech.2004.02.023

  24. 24.

    Angelidaki, I., Ahring, B.K.: Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28, 727–731 (1994)

Download references

Acknowledgements

This work was supported by the Region Reunion (France) as part of the funding of a Research Thesis in the PIMENT (Physics and Mathematical Engineering for Energy, Environment and Building) Laboratory at the University of Reunion Island.

Author information

Correspondence to Hélène Caillet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caillet, H., Adelard, L. Start-Up Strategy and Process Performance of Semi-Continuous Anaerobic Digestion of Raw Sugarcane Vinasse. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-00964-z

Download citation

Keywords

  • Anaerobic digestion
  • Sugar cane vinasse
  • Pilot scale
  • BMP
  • Process performance