Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrolytic Treatment of Swine Wastewater: Recent Progress and Challenges

  • 14 Accesses

Abstract

Electrochemical methods have received an intensive interest in the treatment of many types of wastewaters. In comparison to biological processes, electrochemistry-based approaches such as electrocoagulation and electrooxidation bring about higher efficiencies and shorter reaction times, which render them as promising for future environmental applications. This review is focused on the electrolytic treatment of wastewaters derived from swine production which contain high polluting loads. Recent achievements and fundamental principles of the main electrochemical technologies are presented. Different kinds of electrode materials are summarized, especially anode materials. The effect of important operating parameters is discussed in the context of swine wastewater remediation, such as current density, electrolysis time, pH value, and others. Finally, several leading issues and challenges which could determine the practical adoption of these methods, namely combined processes, hydrogen production and utilization, electrocatalysts, reactor design, and in situ/operando characterization techniques are briefly discussed providing an outlook of novel developments and future research.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1

Reprinted with permission from [38]. Copyright 2015 Elsevier B.V

Fig. 2

Copyright 2015 Elsevier B.V

Fig. 3

Copyright 2018 Elsevier B.V

Fig. 4
Fig. 5
Fig. 6

Copyright 2007 Elsevier B.V

Fig. 7

References

  1. 1.

    Ibanez, J.G., Fitch, A., Frontana-Uribe, B.A., Vasquez-Medrano, R.: Green Electrochemistry. In: Savinell, R.F., Ota, K.-I., Kreysa, G. (eds.) Encyclopedia of Applied Electrochemistry, pp. 964–971. Springer, New York (2014)

  2. 2.

    Rajeshwar, K., Ibanez, J.G., Swain, G.M.: Electrochemistry and the environment. J. Appl. Electrochem. 24, 1077–1091 (1994). https://doi.org/10.1007/BF00241305

  3. 3.

    Cho, J.H., Lee, J.E., Ra, C.S.: Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater. J. Hazard. Mater. 180, 535–541 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.067

  4. 4.

    Lahav, O., Schwartz, Y., Nativ, P., Gendel, Y.: Sustainable removal of ammonia from anaerobic-lagoon swine waste effluents using an electrochemically-regenerated ion exchange process. Chem. Eng. J. 218, 214–222 (2013). https://doi.org/10.1016/j.cej.2012.12.043

  5. 5.

    Huang, H., Xiao, D., Liu, J., Hou, L., Ding, L.: Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling. Sci. Rep. 5, 10183 (2015). https://doi.org/10.1038/srep10183

  6. 6.

    Yetilmezsoy, K., Ilhan, F., Sapci-Zengin, Z., Sakar, S., Gonullu, M.T.: Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a post-treatment study. J. Hazard. Mater. 162, 120–132 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.015

  7. 7.

    Wang, M., Cao, W., Wu, Y., Lu, H., Li, B.: Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris. Environ. Technol. 37, 1451–1460 (2016). https://doi.org/10.1080/09593330.2015.1119199

  8. 8.

    Borbón, B., Oropeza-Guzman, M.T., Brillas, E., Sirés, I.: Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes. Environ. Sci. Pollut. Res. 21, 8573–8584 (2014). https://doi.org/10.1007/s11356-014-2787-x

  9. 9.

    Ihara, I., Umetsu, K., Kanamura, K., Watanabe, T.: Electrochemical oxidation of the effluent from anaerobic digestion of dairy manure. Bioresour. Technol. 97, 1360–1364 (2006). https://doi.org/10.1016/j.biortech.2005.07.007

  10. 10.

    Şengil, I.A., Özacar, M.: Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J. Hazard. Mater. 137, 1197–1205 (2006). https://doi.org/10.1016/j.jhazmat.2006.04.009

  11. 11.

    Kushwaha, J.P., Srivastava, V.C., Mall, I.D.: Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Sep. Purif. Technol. 76, 198–205 (2010). https://doi.org/10.1016/j.seppur.2010.10.008

  12. 12.

    Melchiors, M.S., Piovesan, M., Becegato, V.R., Becegato, V.A., Tambourgi, E.B., Paulino, A.T.: Treatment of wastewater from the dairy industry using electroflocculation and solid whey recovery. J. Environ. Manage. 182, 574–580 (2016). https://doi.org/10.1016/j.jenvman.2016.08.022

  13. 13.

    Davarnejad, R., Nikseresht, M.: Dairy wastewater treatment using an electrochemical method: experimental and statistical study. J. Electroanal. Chem. 775, 364–373 (2016). https://doi.org/10.1016/j.jelechem.2016.06.016

  14. 14.

    Mook, W.T., Chakrabarti, M.H., Aroua, M.K., Khan, G.M.A., Ali, B.S., Islam, M.S., Abu Hassan, M.A.: Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination 285, 1–13 (2012). https://doi.org/10.1016/j.desal.2011.09.029

  15. 15.

    Sahu, O.P., Gupta, V., Chaudhari, P.K., Srivastava, V.C.: Electrochemical treatment of actual sugar industry wastewater using aluminum electrode. Int. J. Environ. Sci. Technol. 12, 3519–3530 (2015). https://doi.org/10.1007/s13762-015-0774-5

  16. 16.

    Sahu, O.P., Chaudhari, P.K.: Electrochemical treatment of sugar industry wastewater: COD and color removal. J. Electroanal. Chem. 739, 122–129 (2015). https://doi.org/10.1016/j.jelechem.2014.11.037

  17. 17.

    Drogui, P., Asselin, M., Brar, S.K., Benmoussa, H., Blais, J.F.: Electrochemical removal of pollutants from agro-industry wastewaters. Sep. Purif. Technol. 61, 301–310 (2008)

  18. 18.

    Kobya, M., Can, O.T., Bayramoglu, M.: Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J. Hazard. Mater. 100, 163–178 (2003). https://doi.org/10.1016/S0304-3894(03)00102-X

  19. 19.

    Ozyonar, F.: Optimization of operational parameters of electrocoagulation process for real textile wastewater treatment using Taguchi experimental design method. Desalin. Water Treat. 57, 2389–2399 (2016). https://doi.org/10.1080/19443994.2015.1005153

  20. 20.

    Yan, L., Wang, Y., Li, J., Ma, H., Liu, H., Li, T., Zhang, Y.: Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination 341, 87–93 (2014). https://doi.org/10.1016/j.desal.2014.02.037

  21. 21.

    Bhagawan, D., Poodari, S., Golla, S., Himabindu, V., Vidyavathi, S.: Treatment of the petroleum refinery wastewater using combined electrochemical methods. Desalin. Water Treat. 57, 3387–3394 (2016). https://doi.org/10.1080/19443994.2014.987175

  22. 22.

    Vijayaraghavan, K., Ahmad, D., Yazid, A.Y.A.: Electrolytic treatment of standard Malaysian rubber process wastewater. J. Hazard. Mater. 150, 351–356 (2008). https://doi.org/10.1016/j.jhazmat.2007.04.112

  23. 23.

    Nielson, K., Smith, D.W.: Ozone-enhanced electroflocculation in municipal wastewater treatment. J. Environ. Eng. Sci. 4, 65–76 (2005). https://doi.org/10.1139/S04-043

  24. 24.

    Pérez, G., Saiz, J., Ibañez, R., Urtiaga, A.M., Ortiz, I.: Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Water Res. 46, 2579–2590 (2012). https://doi.org/10.1016/j.watres.2012.02.015

  25. 25.

    García-García, A., Martínez-Miranda, V., Martínez-Cienfuegos, I.G., Almazán-Sánchez, P.T., Castañeda-Juárez, M., Linares-Hernández, I.: Industrial wastewater treatment by electrocoagulation–electrooxidation processes powered by solar cells. Fuel 149, 46–54 (2015). https://doi.org/10.1016/j.fuel.2014.09.080

  26. 26.

    Sahu, O., Mazumdar, B., Chaudhari, P.K.: Treatment of wastewater by electrocoagulation: a review. Environ. Sci. Pollut. Res. 21, 2397–2413 (2014). https://doi.org/10.1007/s11356-013-2208-6

  27. 27.

    Moussa, D.T., El-Naas, M.H., Nasser, M., Al-Marri, M.J.: A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J. Environ. Manage. 186, 24–41 (2017). https://doi.org/10.1016/j.jenvman.2016.10.032

  28. 28.

    Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J., Cocke, D.L.: Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 114, 199–210 (2004). https://doi.org/10.1016/j.jhazmat.2004.08.009

  29. 29.

    Kabdaşlı, I., Arslan-Alaton, I., Ölmez-Hancı, T., Tünay, O.: Electrocoagulation applications for industrial wastewaters: a critical review. Environ. Technol. Rev. 1, 2–45 (2012). https://doi.org/10.1080/21622515.2012.715390

  30. 30.

    Liu, H., Zhao, X., Qu, J.: Electrocoagulation in water treatment. In: Comninellis, C., Chen, G. (eds.) Electrochemistry for the Environment, pp. 245–262. Springer, New York (2010)

  31. 31.

    Thirugnanasambandham, K., Sivakumar, V., Prakasmaran, J.: Optimization of process parameters in electrocoagulation treating chicken industry wastewater to recover hydrogen gas with pollutant reduction. Renew. Energy 80, 101–108 (2015). https://doi.org/10.1016/j.renene.2015.01.030

  32. 32.

    Zhang, Z., Zhao, L., Li, Y., Chu, M.: A modified method to calculate critical coagulation concentration based on DLVO theory. Math. Prob. Eng. 2015, 1–6 (2015)

  33. 33.

    Oncsik, T., Trefalt, G., Csendes, Z., Szilagyi, I., Borkovec, M.: Aggregation of negatively charged colloidal particles in the presence of multivalent cations. Langmuir 30, 733–741 (2014). https://doi.org/10.1021/la4046644

  34. 34.

    Kobya, M., Demirbas, E.: Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation. J. Water Process Eng. 8, 64–74 (2015). https://doi.org/10.1016/j.jwpe.2015.09.006

  35. 35.

    Jiménez, C., Sáez, C., Martínez, F., Cañizares, P., Rodrigo, M.A.: Electrochemical dosing of iron and aluminum in continuous processes: a key step to explain electro-coagulation processes. Sep. Purif. Technol. 98, 102–108 (2012). https://doi.org/10.1016/j.seppur.2012.07.005

  36. 36.

    Johnson, P.N., Amirtharajah, A.: Ferric chloride and alum as single and dual coagulants. J. Am. Water Work. Assoc. 75, 232–239 (1983)

  37. 37.

    Mores, R., Treichel, H., Zakrzevski, C.A., Kunz, A., Steffens, J., Dallago, R.M.: Remove of phosphorous and turbidity of swine wastewater using electrocoagulation under continuous flow. Sep. Purif. Technol. 171, 112–117 (2016). https://doi.org/10.1016/j.seppur.2016.07.016

  38. 38.

    Han, Z., Wang, L., Duan, L., Zhu, S., Ye, Z., Yu, H.: The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration. Sep. Purif. Technol. 156, 817–826 (2015). https://doi.org/10.1016/j.seppur.2015.10.054

  39. 39.

    Rahman, S., Borhan, M.S.: Electrolysis of Swine manure using three different electrodes Fe-Fe, Al-Al and Fe-Al. Am. J. Agric. Biol. Sci. 9, 490–502 (2014). https://doi.org/10.3844/ajabssp.2014.490.502

  40. 40.

    Laridi, R., Drogui, P., Benmoussa, H., Blais, J.-F., Auclair, J.C.: Removal of refractory organic compounds in liquid swine manure obtained from a biofiltration process using an electrochemical treatment. J. Environ. Eng. 131, 1302–1310 (2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1302)

  41. 41.

    Uğurlu, M., Gürses, A., Doğar, Ç., Yalçın, M.: The removal of lignin and phenol from paper mill effluents by electrocoagulation. J. Environ. Manage. 87, 420–428 (2008). https://doi.org/10.1016/j.jenvman.2007.01.007

  42. 42.

    Zhang, X., Lin, H., Hu, B.: The effects of electrocoagulation on phosphorus removal and particle settling capability in swine manure. Sep. Purif. Technol. 200, 112–119 (2018). https://doi.org/10.1016/j.seppur.2018.02.025

  43. 43.

    Marriaga-Cabrales, N., Machuca-Martínez, F.: Fundamentals of electrocoagulation. In: Peralta-Hernández, J.M., Rodrigo-Rodrigo, M.A., Martínez-Huitle, C.A. (eds.) Evaluation of Electrochemical Reactors as a New Way to Environmental Protection, pp. 1–16. Research Signpost, Kerala (2014)

  44. 44.

    Mores, R., Kunz, A., Steffens, J., Dallago, R.M., Benazzi, T.L., Amaral, A.C.: Swine manure digestate treatment using electrocoagulation. Sci. Agric. 73, 439–443 (2016). https://doi.org/10.1590/0103-9016-2015-0269

  45. 45.

    Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., Mahvi, A.H.: Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review. J. Environ. Heal. Sci. Eng. 13, 74 (2015). https://doi.org/10.1186/s40201-015-0233-8

  46. 46.

    Attour, A., Touati, M., Tlili, M., Ben Amor, M., Lapicque, F., Leclerc, J.P.: Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep. Purif. Technol. 123, 124–129 (2014). https://doi.org/10.1016/j.seppur.2013.12.030

  47. 47.

    Khaled, B., Wided, B., Béchir, H., Elimame, E., Mouna, L., Zied, T.: Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arab. J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2014.12.012

  48. 48.

    Anand, M.V., Srivastava, V.C., Singh, S., Bhatnagar, R., Mall, I.D.: Electrochemical treatment of alkali decrement wastewater containing terephthalic acid using iron electrodes. J. Taiwan Inst. Chem. Eng. 45, 908–913 (2014). https://doi.org/10.1016/j.jtice.2013.08.010

  49. 49.

    Brillas, E., Martínez-Huitle, C.A.: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B 166–167, 603–643 (2015). https://doi.org/10.1016/j.apcatb.2014.11.016

  50. 50.

    Deng, Y., Englehardt, J.D.: Electrochemical oxidation for landfill leachate treatment. Waste Manag. 27, 380–388 (2007). https://doi.org/10.1016/j.wasman.2006.02.004

  51. 51.

    Panizza, M., Cerisola, G.: Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51, 191–199 (2005). https://doi.org/10.1016/j.electacta.2005.04.023

  52. 52.

    Vargas, R., Borrás, C., Méndez, D., Mostany, J., Scharifker, B.R.: Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. J. Solid State Electrochem. 20, 875–893 (2016). https://doi.org/10.1007/s10008-015-2984-7

  53. 53.

    Stasinakis, A.S.: Use of selected advanced oxidation processes ( AOPs ) for wastewater treatment—a mini review. Glob. Nest J. 10, 376–385 (2008)

  54. 54.

    Marselli, B., Garcia-Gomez, J., Michaud, P.-A., Rodrigo, M.A., Comninellis, C.: Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150, D79 (2003). https://doi.org/10.1149/1.1553790

  55. 55.

    Martínez-Huitle, C.A., Ferro, S.: Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340 (2006). https://doi.org/10.1039/B517632H

  56. 56.

    Martínez-Huitle, C.A., Andrade, L.S.: Electrocatalysis in Wastewater Treatment: Recent Mechanism Advances. Nova, Quim (2011). https://doi.org/10.1590/S0100-40422011000500021s

  57. 57.

    Scialdone, O.: Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: a simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim. Acta 54, 6140–6147 (2009). https://doi.org/10.1016/j.electacta.2009.05.066

  58. 58.

    Feng, J.: Electrocatalysis of anodic oxygen-transfer reactions. J. Electrochem. Soc. 137, 507 (1990). https://doi.org/10.1149/1.2086488

  59. 59.

    Comninellis, C.: Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta 39, 1857–1862 (1994). https://doi.org/10.1016/0013-4686(94)85175-1

  60. 60.

    Sirés, I., Brillas, E.: Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ. Int. 40, 212–229 (2012). https://doi.org/10.1016/j.envint.2011.07.012

  61. 61.

    Fóti, G.: Oxidation of organics by intermediates of water discharge on IrO[sub 2] and synthetic diamond anodes. Electrochem. Solid State Lett. 2, 228 (1999). https://doi.org/10.1149/1.1390792

  62. 62.

    Szpyrkowicz, L., Kelsall, G.H., Kaul, S.N., De Faveri, M.: Performance of electrochemical reactor for treatment of tannery wastewaters. Chem. Eng. Sci. 56, 1579–1586 (2001). https://doi.org/10.1016/S0009-2509(00)00385-7

  63. 63.

    Chiang, L.-C., Chang, J.-E., Wen, T.-C.: Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 29, 671–678 (1995). https://doi.org/10.1016/0043-1354(94)00146-X

  64. 64.

    Comninellis, C., Nerini, A.: Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. (1995). https://doi.org/10.1007/BF00251260

  65. 65.

    Yang, C.-H.: Hypochlorite production on Ru-Sn binary oxide electrode and its application in treatment of dye wastewater. Can. J. Chem. Eng. 77, 1161–1168 (1999). https://doi.org/10.1002/cjce.5450770612

  66. 66.

    Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G., De Battisti, A.: Electrochemical incineration of glucose as a model organic substrate. II. Role of active chlorine mediation. J. Electrochem. Soc. 147, 592–596 (2000). https://doi.org/10.1149/1.1393238

  67. 67.

    Martínez-Huitle, C.A., Ferro, S., De Battisti, A.: Electrochemical incineration of oxalic acid: reactivity and engineering parameters. J. Appl. Electrochem. (2005). https://doi.org/10.1007/s10800-005-9003-0

  68. 68.

    Israilides, C.: Olive oil wastewater treatment with the use of an electrolysis system. Bioresour. Technol. 61, 163–170 (1997). https://doi.org/10.1016/S0960-8524(97)00023-0

  69. 69.

    Ramalho, A.M.Z., Martínez-Huitle, C.A., da Silva, D.R.: Application of electrochemical technology for removing petroleum hydrocarbons from produced water using a DSA-type anode at different flow rates. Fuel (2010). https://doi.org/10.1016/j.fuel.2009.07.016

  70. 70.

    Martínez-Huitle, C.A., Ferro, S., De Battisti, A.: Electrochemical Incineration in the presence of halides. Electrochem. Solid-State Lett. (2005). https://doi.org/10.1149/1.2042628

  71. 71.

    Martínez-Huitle, C.A., Rodrigo, M.A., Sirés, I., Scialdone, O.: Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem. Rev. 115, 13362–13407 (2015). https://doi.org/10.1021/acs.chemrev.5b00361

  72. 72.

    Gerischer, H., Mauerer, A.: Untersuchungen zur anodischen oxidation von ammoniak an platin-elektroden. J. Electroanal. Chem. (1970). https://doi.org/10.1016/S0022-0728(70)80103-6

  73. 73.

    Herron, J.A., Ferrin, P., Mavrikakis, M.: Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study. J. Phys. Chem. C. 119, 14692–14701 (2015). https://doi.org/10.1021/jp512981f

  74. 74.

    Zhong, C., Hu, W.B., Cheng, Y.F.: Recent advances in electrocatalysts for electro-oxidation of ammonia. J. Mater. Chem. A. 1, 3216 (2013). https://doi.org/10.1039/c2ta00607c

  75. 75.

    Li, L., Liu, Y.: Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics. J. Hazard. Mater. 161, 1010–1016 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.047

  76. 76.

    Jafvert, C.T., Valentine, R.L.: Reaction scheme for the chlorination of ammoniacal water. Environ. Sci. Technol. 26, 577–786 (1992). https://doi.org/10.1021/es00027a022

  77. 77.

    Anglada, Á., Urtiaga, A., Ortiz, I.: Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J. Chem. Technol. Biotechnol. 84, 1747–1755 (2009). https://doi.org/10.1002/jctb.2214

  78. 78.

    Klamklang, S., Vergnes, H., Pruksathorn, K., Damrongler, S.: Electrochemical incineration of organic pollutants for wastewater Treatment: past, present and prospect. In: Organic pollutants ten years after the stockholm convention—environmental and analytical update. InTech, London (2012)

  79. 79.

    Feng, Y., Yang, L., Liu, J., Logan, B.E.: Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci. Water Res. Technol. 2, 800–831 (2016). https://doi.org/10.1039/C5EW00289C

  80. 80.

    Bejan, D., Sagitova, F., Bunce, N.J.: Evaluation of electrolysis for oxidative deodorization of hog manure. J. Appl. Electrochem. 35, 897–902 (2005). https://doi.org/10.1007/s10800-005-4722-9

  81. 81.

    Diaz, L.A., Botte, G.G.: Electrochemical deammonification of synthetic swine wastewater. Ind. Eng. Chem. Res. 51, 12167–12172 (2012). https://doi.org/10.1021/ie3015022

  82. 82.

    Bejan, D., Rabson, L.M., Bunce, N.J.: Electrochemical deodorization and disinfection of hog manure. Can. J. Chem. Eng. 85, 929–935 (2008). https://doi.org/10.1002/cjce.5450850615

  83. 83.

    Lee, M.-G., Kim, Y.-C., Ra, J.-G.: The treatment of the swine wastewater by continuous electrochemical oxidation process. J. Korean Soc. Environ. Eng. 26, 340–346 (2004)

  84. 84.

    Huang, H., Zhang, P., Zhang, Z., Liu, J., Xiao, J., Gao, F.: Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. J. Clean. Prod. 127, 302–310 (2016). https://doi.org/10.1016/j.jclepro.2016.04.002

  85. 85.

    Lei, X., Maekawa, T.: Electrochemical treatment of anaerobic digestion effluent using a Ti/Pt-IrO2 electrode. Bioresour. Technol. 98, 3521–3525 (2007). https://doi.org/10.1016/j.biortech.2006.11.018

  86. 86.

    Chae, K.J., Yim, S.K., Choi, K.H., Kim, S.K., Park, W.K.: Integrated biological and electro-chemical treatment of swine manure. Water Sci. Technol. 49, 427–434 (2004)

  87. 87.

    Wett, B.: Development and implementation of a robust deammonification process. Water Sci. Technol. (2007). https://doi.org/10.2166/wst.2007.611

  88. 88.

    Wu, W., Huang, Z.-H., Lim, T.-T.: Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal. A 480, 58–78 (2014). https://doi.org/10.1016/j.apcata.2014.04.035

  89. 89.

    Oller, I., Malato, S., Sánchez-Pérez, J.A.: Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci. Total Environ. 409, 4141–4166 (2011). https://doi.org/10.1016/j.scitotenv.2010.08.061

  90. 90.

    Park, H., Choo, K.H., Park, H.S., Choi, J., Hoffmann, M.R.: Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: influence of organic and particulate matter. Chem. Eng. J. 215–216, 802–810 (2013). https://doi.org/10.1016/j.cej.2012.11.075

  91. 91.

    Cheng, W., Singh, N., MacIá-Agulló, J.A., Stucky, G.D., McFarland, E.W., Baltrusaitis, J.: Optimal experimental conditions for hydrogen production using low voltage electrooxidation of organic wastewater feedstock. Int. J. Hydrogen Energy 37, 13304–13313 (2012). https://doi.org/10.1016/j.ijhydene.2012.06.073

  92. 92.

    Santos, D., Sequeira, C., Figueiredo, J.: Hydrogen production by alkaline water electrolysis. Quim. Nova. 36, 1176–1193 (2013). https://doi.org/10.1590/S0100-40422013000800017

  93. 93.

    Safizadeh, F., Ghali, E., Houlachi, G.: Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int. J. Hydrogen Energy (2014). https://doi.org/10.1016/j.ijhydene.2014.10.109

  94. 94.

    Jiang, J., Chang, M., Pan, P.: Simultaneous hydrogen production and electrochemical oxidation of organics using boron-doped diamond electrodes. Environ. Sci. Technol. 42, 3059–3063 (2008). https://doi.org/10.1021/es702466k

  95. 95.

    Kargi, F., Catalkaya, E.C.: Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. Int. J. Hydrogen Energy 36, 8252–8260 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.197

  96. 96.

    Kargi, F., Catalkaya, E.C.: Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal. Int. J. Hydrogen Energy 36, 3457–3464 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.078

  97. 97.

    Kargi, F., Catalkaya, E.C., Uzuncar, S.: Hydrogen gas production from waste anaerobic sludge by electrohydrolysis: effects of applied DC voltage. Int. J. Hydrogen Energy 36, 2049–2056 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.087

  98. 98.

    Kargi, F., Uzunçar, S.: Valorization of cheese whey by electrohydrolysis for hydrogen gas production and COD removal. Waste Biomass Valoriz. 4, 517–528 (2013). https://doi.org/10.1007/s12649-012-9188-5

  99. 99.

    Eker, S., Kargi, F.: Hydrogen gas production from electrohydrolysis of industrial wastewater organics by using photovoltaic cells (PVC). Int. J. Hydrogen Energy 35, 12761–12766 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.101

  100. 100.

    Zhu, X., Ni, J., Xing, X., Li, H., Jiang, Y.: Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochim. Acta (2011). https://doi.org/10.1016/j.electacta.2010.10.073

  101. 101.

    Subba Rao, A.N., Venkatarangaiah, V.T.: Metal oxide-coated anodes in wastewater treatment. Environ. Sci. Pollut. Res. 21, 3197–3217 (2014). https://doi.org/10.1007/s11356-013-2313-6

  102. 102.

    Chang, J.H., Yang, T.J., Tung, C.H.: Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater. J. Hazard. Mater. 163, 152–157 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.072

  103. 103.

    Tan, C., Xiang, B., Li, Y., Fang, J., Huang, M.: Preparation and characteristics of a nano-PbO2 anode for organic wastewater treatment. Chem. Eng. J. 166, 15–21 (2011). https://doi.org/10.1016/j.cej.2010.08.018

  104. 104.

    Zhang, C., Jiang, Y., Li, Y., Hu, Z., Zhou, L., Zhou, M.: Three-dimensional electrochemical process for wastewater treatment: a general review. Chem. Eng. J. 228, 455–467 (2013). https://doi.org/10.1016/j.cej.2013.05.033

  105. 105.

    Can, W., Yao-Kun, H., Qing, Z., Min, J.: Treatment of secondary effluent using a three-dimensional electrode system: COD removal, biotoxicity assessment, and disinfection effects. Chem. Eng. J. (2014). https://doi.org/10.1016/j.cej.2013.12.044

  106. 106.

    Ding, J., Zhao, Q.-L., Wei, L.-L., Chen, Y., Shu, X.: Ammonium nitrogen removal from wastewater with a three-dimensional electrochemical oxidation system. Water Sci. Technol. 68, 552–559 (2013). https://doi.org/10.2166/wst.2013.262

  107. 107.

    Chen, Y., Shi, W., Xue, H., Han, W., Sun, X., Li, J., Wang, L.: Enhanced electrochemical degradation of dinitrotoluene wastewater by Sn-Sb-Ag-modified ceramic particulates. Electrochim. Acta 58, 383–388 (2011). https://doi.org/10.1016/j.electacta.2011.09.047

  108. 108.

    Farinos, R.M., Ruotolo, L.A.M.: Comparison of the electrooxidation performance of three-dimensional RVC/PbO2 and boron-doped diamond electrodes. Electrochim. Acta 224, 32–39 (2017). https://doi.org/10.1016/j.electacta.2016.12.025

  109. 109.

    Santos, D.M.F., Sequeira, C.A.C.: Eléctrodo de leito fluidizado. Origem e aplicaçoes. Ciência Tecnol. dos Mater. 14, 40–49 (2002)

  110. 110.

    Zhou, M., Wu, Z., Ma, X., Cong, Y., Ye, Q., Wang, D.: A novel fluidized electrochemical reactor for organic pollutant abatement. Sep. Purif. Technol. (2004). https://doi.org/10.1016/S1383-5866(03)00178-3

  111. 111.

    Zhou, M.H., Lei, L.C.: Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor. Electrochim. Acta (2006). https://doi.org/10.1016/j.electacta.2005.12.028

  112. 112.

    Zhu, Y., Chen, H.-C., Hsu, C.-S., Lin, T.-S., Chang, C.-J., Chang, S.-C., Tsai, L.-D., Chen, H.M.: Operando unraveling of the structural and chemical stability of P-substituted CoSe 2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett. 4, 987–994 (2019). https://doi.org/10.1021/acsenergylett.9b00382

  113. 113.

    Chen, Z., Liu, Y., Wei, W., Ni, B.J.: Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci. Nano. 6, 2332–2366 (2019). https://doi.org/10.1039/c9en00411d

  114. 114.

    Neto, A.O., Nandenha, J., Assumpção, M.H.M.T., Linardi, M., Spinacé, E.V., De Souza, R.F.B.: In situ spectroscopy studies of ethanol oxidation reaction using a single fuel cell/ATR-FTIR setup. Int. J. Hydrogen Energy 38, 10585–10591 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.026

  115. 115.

    Lwin, S., Diao, W., Baroi, C., Gaffney, A.M., Fushimi, R.R.: Characterization of MoVTeNbOx catalysts during oxidation reactions using In Situ/Operando techniques: a review. Catalysts 7, 1–15 (2017). https://doi.org/10.3390/catal7040109

Download references

Acknowledgements

This work was supported by FCT—Fundação para a Ciência e Tecnologia—under Grant SFRH/BDE/111878/2015.

Author information

Correspondence to G. Lourinho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lourinho, G., Brito, P.S.D. Electrolytic Treatment of Swine Wastewater: Recent Progress and Challenges. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-00951-4

Download citation

Keywords

  • Electrocoagulation
  • Electrocatalysts
  • Electrooxidation
  • Hydrogen production
  • Swine wastewater