Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bioremediation of Oxamyl Compounds by Algae: Description and Traits of Root-Knot Nematode Control


Safety of environment and human health has newly become crucial factors when selecting crops production programs. With regard to nematicides, oxamyl is a systematic nematicide widely used for the control of soil nematodes. Accelerated biodegradation of the oxamyl, utilized at the recommended dose in soil cultured by banana plants and coupled with root-knot nematode (RKN, Meloidogyne incognita), was observed using algal bioassay studies. However, algae play an important role in maintaining micro and macro elements availability, plant biochemical process, nitrogen fixation, photosynthesis and rebate the harmful effect of pesticides through degradation. For this reason, algae such as: Chlorella vulgaris, Scenedesmus obliquus, Anabaena oryza and Nostoc muscorum have been used to determine the degradability enhancement of oxamyl by an accelerated biodegradation process. All oxamyl-degrading species showed a highly effective to enhance biodegradation of oxamyl compound. Memorable, the alga S. obliquus was the most successful one for oxamyl degradation that denoted by the least residue in plant was 25% and oxamyl degradation in untreated soil by algae was 100% and had an active promoting effect on plant health. Unlike, the incorporated application of alga, C. vulgaris was the most successful action in diminishing the nematode, juveniles2 count in soil (57.55%) and galls count on roots (52.87%).

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Root-knot nematode


Root-lesion nematodes


Plant-parasitic nematodes




High performance liquid chromatography


Arabino galactan proteins


Sodium hypochlorite


Genetic Engineering and Biotechnology Research Institute


Analysis of variance


Retention time


Not found


  1. 1.

    Khalil, M.S., Darwesh, D.M.: Some integrated practices to manage root-knot nematodes on tomatoes: a mini review, innovative techniques in agriculture. Innov. Tech. Agric. 3, 618–625 (2018)

  2. 2.

    Jones, M.G.K., Fosu-Nyarko, J.: Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann. Appl. Biol. 164, 163–181 (2014)

  3. 3.

    Jones, J.T., Haegeman, A., Danchin, E.G.J.: Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant. Pathol. 14, 946–961 (2013)

  4. 4.

    Singh, B.K., Walker, A., Wright, D.J.: Cross-enhancement of accelerated biodegradation of organophosphorus compounds in soils: dependence on structural similarity of compounds. Soil. Biol. Biochem. 37, 1675–1682 (2005)

  5. 5.

    Abd-Elgawad, M.M.M., Askary, T.H.: Impact of Phytonematodes on Agriculture Economy. CAB International Biocontrol Agents of Phytonematodes, Wallingford (2015)

  6. 6.

    Georgis, R., Koppenhöfer, A.M., Lacey, L.A., Belair, G., Duncan, L.W., Grewal, P.S., Samish, M., Tan, L., Torrvan, P., Tol, W.H.M.: Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006)

  7. 7.

    Lozowicka, B., Kaczynski, P., Paritova, A.E., Kuzembekova, G.B., Abzhalieva, A.B., Sarsembayeva, N.B., Alihan, K.: Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food Chem. Toxicol. 64, 238–248 (2014)

  8. 8.

    Robacer, M., Canali, S., Kristensen, H.L., Bavec, F., Mlakar, S.G., Jakop, M., Bavec, M.: Cover crops in organic field vegetable production. Sci. Hortic. 208, 104–110 (2016)

  9. 9.

    De Gerónimo, E., Aparicio, V.C., Bárbaro, S., Portocarrero, R., Jaime, S., Costa, J.L.: Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107, 423–431 (2014)

  10. 10.

    Wee, S.Y., Airs, A.Z.: Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere 188, 575–581 (2017)

  11. 11.

    Radivojević, L.J., Gasić, S., Santrić, L.J., Stanković-Kalezić, R.: The impact of atrazine on several biochemical properties of chernozem Soil. J. Serb. Chem. Soc. 73, 951–959 (2008)

  12. 12.

    Tomlin, C.D.S.: The e-Pesticide Manual, Version 2.2. The British Crop Protection Council, Surrey UK (2002).

  13. 13.

    Tomlin, C.D.S.: Insecticidal reduction of potato leaf roll virus transmission by Muzuspersicae. Ann. Appl. Biol. 146, 81–88 (2005)

  14. 14.

    Khan, Z., Park, S.D., Shin, S.Y., Bae, S.G., Yeon, I.K., Seo, Y.J.: Management of Meloidogyne incognita on tomato by root-dip treatment in culture filtrate of the blue-green alga. Microcoleus Vaginatus Bioresour. Technol. 96, 1338–1341 (2005)

  15. 15.

    Hamouda, R.A., El-Ansary, M.S.M.: Potential of plant-parasitic nematode control in banana plants by microalgae as a new approaches towards resistance. Egypt. J. Biol. Best Control. 271, 65–172 (2017)

  16. 16.

    Flores, E., Herrero, A.: Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans. 33, 164–167 (2005)

  17. 17.

    Kulasooriya, S.A., Magana-Arachchi, D.N.: Nitrogen fixing cyanobacteria: their diversity, ecology and utilization with special reference to rice cultivation. J. Natl. Sci. Found. 44, 111–128 (2016)

  18. 18.

    Gao, Q.T., Wong, T.S., Tam, N.F.Y.: Removal and biodegradation of nonyl phenol by different Chlorella species. Mar. Pollut. Bull. 63, 445–451 (2011)

  19. 19.

    Ata, A., Nalcaci, O.O., Ovez, B.: Macro algae Gracilaria verrucosa as a biosorbent: a study of sorption mechanisms. Algal. Res. 1, 194–204 (2012)

  20. 20.

    Marinescu, M., Dumitru, M., Lacatusu, A.: Biodegradation of petroleum hydrocarbons in an artificial polluted soil. Res. J. Agric. Sci. 41, 157–162 (2009)

  21. 21.

    Wang, X.C., Zhao, H.M.: Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. Journal of coastal research, SI 50 In: Proceedings of the 9th International Coastal Symposium. pp. 1056–1061 (2007)

  22. 22.

    Hamouda, R.A., Sorour, N.M., Yeheia, D.S.: Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int. Biodeterior. Biodegrad. 11, 2128–2134 (2016)

  23. 23.

    Priyadarshani, I., Sahu, D., Rath, B.: Microalgal bioremediation: Current practices and perspectives. J. Biochem. Technol. 3, 299–304 (2011)

  24. 24.

    Chekroun, K.B., Sánchez, E., Baghour, M.: The role of algae in bioremediation of organic pollutants. Int. Res. J. Public. Environ. Health. 1, 19–32 (2014)

  25. 25.

    Maheshwari, R., Singh, U., Singh, P., Singh, N., Jat, B.L., Rani, B.: To decontaminate wastewater employing bioremediation technologies. J. Adv. Sci. Res. 5, 7–15 (2014)

  26. 26.

    Bwapwa, J.K., Jaiyeola, A.T., Chetty, R.: Bioremediation of acid mine drainage using algae strains: a review. S. Afr. J. Chem. Eng. 24, 62–70 (2017)

  27. 27.

    Ibrahim, W.M., Karam, M.A., El-Shahat, R.M., Adway, A.A.: Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. J. Biomed Biotechnol. 14, 1–6 (2015)

  28. 28.

    Cáceres, P.T., Megharaj, M., Naidu, R.: Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr. Microbiol. 57, 643–646 (2008)

  29. 29.

    Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R.: Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 5, 159–172 (2013)

  30. 30.

    Arnold, A.A., Genard, B., Zito, F., Tremblay, R., Warschawski, D.E., Marcotte, I.: Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim. Biophys. Acta 1848, 369–377 (2015)

  31. 31.

    Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., Willats, W.G.T.: The cell walls of green algae: a journey through evolution and diversity. Front. Plant Sci. 82, 1–7 (2012)

  32. 32.

    Alexander, M.: Biodegradation and Bioremedation, 2nd edn. Academic Press, England (1999)

  33. 33.

    Lu, T., Zhu, Y., Xu, J., Ke, M., Zhang, M., Tan, C., Fu, Z., Qian, H.: Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa. Environ Pollut 234, 379–388 (2018)

  34. 34.

    Kumar, N., Mukherjee, I., Sarkar, B., Paul, R.K.: Degradation of tricyclazole: effect of moisture, soil type, elevated carbon dioxide and blue green algae (BGA). J. Hazard Mater. 321, 517–527 (2017)

  35. 35.

    Dong, X., Sun, H.: Effect of temperature and moisture on degradation of herbicide atrazine in agricultural soil. Int. J. Environ. Agric Res. 2, 150–157 (2016)

  36. 36.

    Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales) characterization of the synchronous culture of Scenedesmus obliquus. Bacteriol. Rev. 35, 171–205 (1971)

  37. 37.

    American Public Health Association [APHA]: Standard Methods for the Examination of Water and Wastewater 22nd ed. APHA, Inc. Washington, D.C. (2005).

  38. 38.

    Hussey, R.S., Barker, R.K.: A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant diseases report 57, 1025–1028 (1973).

  39. 39.

    McGarvey, B.D.: High-performance liquid chromatographic methods for the determination of N-methylcarbamate pesticides in water, soil, plants and air. J. Chromatogr. 642, 89–105 (1993)

  40. 40.

    Krause, R.T.: Resolution, sensitivity and selectivity of a high-performance liquid chromatographic post-column fluorometric labeling technique for determination of carbamate insecticides. J. Chromatogr. 185, 615–626 (1979)

  41. 41.

    Keith, L., Crummett, W., Deegam, J., Libby, R., Taylor, J., Wentler, G.: Principles of environmental analysis. Anal Chem 55, 2210–2218 (1983)

  42. 42.

    Sokal, R.R., Rohlf, F.J.: Biometry: the principles and practice of statistics in biological research. 3rd ed. W.H. Freeman and company New York. 937 pp (1995).

  43. 43.

    Wang, Y., Wu, S., Chen, J., Zhang, C., Xu, Z., Li, G., Cai, L., Shen, W., Wang, Q.: Single and joint toxicity assessment of four currently used pesticides to zebrafish (Daniorerio) using traditional and molecular endpoints. Chemosphere 192, 14–23 (2018)

  44. 44.

    Megharaj, M., Madhavi, D.R., Sreenivasulu, C., Umamaheswari, A., Venkateswarlu, K.: Persistence and effects of fenamiphos on native algal populations and enzymatic activities in soil. Soil. Biol. Biochem. 31, 1549–1553 (1999)

  45. 45.

    Smelt, J.H., Dekker, A., Leistra, M., Houx, N.W.H.: Conversion of four carbamoyloximes in soil samples from above and below the soil water table. Pestic. Sci. 14, 173–181 (1983)

  46. 46.

    Casserly, D.M., Davis, E.M., Downs, T.D., Guthrie, R.K.: Sorption of organics by Selenastrum capricornutum. Water Res. 17, I591–I594 (1983)

  47. 47.

    Ou, L.T., Rao. P. S. C.: Degradation and metabolism of oxamyl and phenamiphos in soil. J. Environ. Sci. Health Part B. 21, 25–40 (1986).

  48. 48.

    Gadd, G.M.: Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem. Technol. Biotechnol. 84, 13–28 (2009)

  49. 49.

    El-Sheekh, M.M., Hamouda, R.A., Nizam, A.A.: Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int. Biodeterior. Biodegrad. 82, 67–72 (2013)

  50. 50.

    El-Sheekh, M.M., Hamouda, R.A.: Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalin. Water Treat. 52, 1448–1454 (2014)

  51. 51.

    Holajjer, P., Kamra, A., Gaur, H.S., Manjunath, M.: Potential of cyanobacteria for biorational management of plant parasitic nematodes: a review. Crop. protection. 53, 147–151 (2013)

  52. 52.

    El-Ansary, M.S.M., Hamouda, R.A.: Biocontrol of root knot nematode infected banana plants by some marine algae. Russ. J. Mar. Biol. 401, 40–146 (2014)

  53. 53.

    Thirumaran, G., Arumugam, M., Arumugam, R., Anantharaman, P.: Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschu sesculentus medikus. Am.-Eurasian J. Agro. 2, 57–66 (2009)

  54. 54.

    Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R.: Consortia of cyanobacteria/microalgae and bacteria. Biotechnol. Potent. Biotechnol. Adv. 29, 896–907 (2011)

  55. 55.

    Osman, A.K., Al-Rehiayani, S.M., Al-Deghairi, M.A., Ahmed, K., Salama, A.K.: Bioremediation of oxamyl in sandy soil using animal manures. Int. Biodeterior. Biodegrad. 63, 341–346 (2009)

  56. 56.

    Rousidou, K., Chanika, E., Georgiadou, D., Soueref, E., Katsarou, D., Kolovos, P., Ntougias, S., Tourna, M., Tzortzakakis, E.A., Dimitrios, G., Karpouzas, D.G.: Isolation of oxamyl-degrading bacteria and identification of cehA as a novel oxamyl hydrolase gene. Front Microbiol. 7, 1–12 (2016)

  57. 57.

    B Ramakrishnan M Megheraj K Venkateswarlu N Sethunathan R Naidu 2011 Mixtures of environmental pollutants: Effect on microorganisms and their activities in soils reviews of environmental contamination and toxicology Springer New York 63 120

  58. 58.

    Kapoor, M., Rajagopal, R.: Enzymatic bioremediation of organphosphorus insecticides by recombinant organphosphorus hydrolase. Int. Biodeteriorat. 65, 896–901 (2011)

Download references


The authors are gratefully acknowledging Dr. Mohamed F. Afifi (University of Sadat City, Cairo, Egypt) for critical reading of the manuscript.

Author information

Correspondence to Ragaa Abdel fatah Hamouda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Ansary, M.S.M., Hamouda, R.A.f. & Ahmed-Farid, O.A. Bioremediation of Oxamyl Compounds by Algae: Description and Traits of Root-Knot Nematode Control. Waste Biomass Valor (2020).

Download citation


  • Oxamyl
  • Biodegradation
  • RKN
  • Meloidogyne incognita
  • Banana
  • Algae