Advertisement

Effect of Phenolic Acids Derived from Rice Straw on Botrytis cinerea and Infection on Tomato

  • Rongrong Hou
  • Jie Shi
  • Xiubing Ma
  • Huanran Wei
  • Jiajun Hu
  • Yiu Fai Tsang
  • Min-Tian GaoEmail author
Original Paper
  • 14 Downloads

Abstract

Phenolic compounds are widely used in different research fields, such as pesticides, medicines, and food. In this study, phenolic acids (PAs) were extracted from rice straw and were found to exhibit a strong inhibitory effect on Botrytis cinerea. B. cinerea mycelial growth and spore generation decreased by 86.18% and 69.10%, respectively, following 0.2 g/L phenolic acid treatment. Confocal microscopic images demonstrated that phenolic acids changed the morphology of B. cinerea. The addition of phenolic acids to B. cinerea-infected tomato leaves increased PAL (phenylalaninammo-nialyase) and PPO (polyphenol oxidase) activities, and decreased POD (peroxidases) and CAT (catalase) activities in the leaves, indicating that phenolic acids enhanced the tolerance of tomato leaves to B. cinerea by reducing oxidative stress. Chlorophyll fluorescence imaging revealed that phenolic acids could alleviate the destruction of the photosynthetic system of B. cinerea-infected leaves. These results provide new insight into the use of phenolic acids from rice straw, through which a complete green cycle of ecological production can be established.

Graphic Abstract

Keywords

Agricultural waste Bioactives Phenolic compound Antimicrobial activity Plant growth Fungicide 

Notes

Acknowledgements

This work was supported by the Special Fund for Agroscientific Research in the Public Interest (No. 201503135-14); Scientific Research Projects of Shanghai Science and Technology Committee (16391902000).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12649_2020_938_MOESM1_ESM.pdf (205 kb)
Supplementary file1 (PDF 205 kb)

References

  1. 1.
    Yu, W., Zhao, R., Sheng, J., Shen, L.: SlERF2 is associated with methyl jasmonate-mdeiated defense response against Botrytis cinerea in tomato fruit. J. Agric. Food Chem. 66(38), 9923–9932 (2018)CrossRefGoogle Scholar
  2. 2.
    Prins, T.W., Tudzynski, P., von Tiedemann, A., Tudzynski, B., Ten Have, A., Hansen, M.E., Van Kan, J.A.L.: Infection strategies of Botrytis cinerea and related necrotrophic pathogens. Fungal Pathology, pp. 33–64. Springer, Netherlands (2000)CrossRefGoogle Scholar
  3. 3.
    Fillinger, S., Elad, Y.: A plant hosts of Botrytis spp. Botrytis—the fungus, the pathogen and its management in agricultural systems. pp. 413–486. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  4. 4.
    Cristescu, S.M., De Martinis, D., te Lintel Hekkert, S., Parker, D.H., Harren, F.J.M.: Ethyleneproduction by Botrytis cinerea in vitro and in tomatoes. Appl. Environ. Microbiol. 68(11), 5342–5350 (2002)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Yang, X., Liu, Q., Qiu, D., Zhang, Y., Zeng, H., Yuan, J., Mao, J.: Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol. Res. 165(2), 142–151 (2010)CrossRefGoogle Scholar
  6. 6.
    Puangpronpitag, D., Sittiwet, C.: Antimicrobial properties of cinnamomum verum aqueous extracts. Asian J. Biol. Sci. 2(2), 49–53 (2009)CrossRefGoogle Scholar
  7. 7.
    Agatemor, C.: Antimicrobial activity of aqueous and ethanol extracts of nine Nigerian spices against four food borne bacteria. Electron. J. Environ. Agric. Food Chem. 10(3), 77–80 (2009)Google Scholar
  8. 8.
    de Rodríguez, D.J., Hernández-Castillo, D., Angulo-Sánchez, J.L., et al.: Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp. Rhizoctonia solani, and Fusarium oxysporum. Ind. Crops Prod. 25(2), 111–116 (2007)CrossRefGoogle Scholar
  9. 9.
    Flores-Moctezuma, H., García Licona, R., Sandoval García, G., Zilch Domínguez, S., Bermúdez Torres, K., Bravo-Luna, L., Martínez Martínez, G., Carvajal-Moreno, M., Montes Belmont, R., Cruz Cruz, V.: Antifungal properties in higher plants. Retrospective analyses and investigations. Rev. Mex. de Fitopatología 18, 125–131 (2000)Google Scholar
  10. 10.
    Mendez, M., Rodríguez, R., Ruiz, J., Morales-Adame, D., Castillo, F., Hernández-Castillo, F.D., Aguilar, C.N.: Antibacterial activity of plant extracts obtained with alternative organics solvents against food-borne pathogen bacteria. Ind. Crops Prod. 37(1), 445–450 (2012)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Hu, W., Deng, J., Liu, X., Zhou, J., Li, X.: Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Adv. 9, 28987–28995 (2019)CrossRefGoogle Scholar
  12. 12.
    Axelsson, L., Franzn, M., Ostwald, M., Berndes, G., Lakshmi, G., Ravindranath, N.H.: Perspective: Jatropha cultivation in Southern India: assessing farmers’ experiences. Biofuels Bioprod. Biorefin. 6(3), 246–256 (2012)CrossRefGoogle Scholar
  13. 13.
    Lee, K.M., Kalyani, D., Tiwari, M.K., Kim, T.S., Dhiman, S.S., Lee, J.K., Kim, I.W.: Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123(4), 636–645 (2012)CrossRefGoogle Scholar
  14. 14.
    Yilmaz, V.A., Brandolini, A., Hidalgo, A.: Phenolic acids and antioxidant activity of wild, feral and domesticated diploid wheats. J. Cereal Sci. 64, 168–175 (2015)CrossRefGoogle Scholar
  15. 15.
    Black, R.L.B., Dix, N.J.: Spore germination and germ hyphal growth of microfungi from litter and soil in the presence of ferulic acid. Trans. Br. Mycol. Soc. 66(2), 305–311 (1976)CrossRefGoogle Scholar
  16. 16.
    Ohi, M., Kitamura, T., Hata, S.: Stimulation by caffeic acid, coumalic acid, and corilagin of the germination of resting spores of the clubroot pathogen Plasmodiophora brassicae. J. Agric. Chem. Soc. Jpn. 67(1), 170–173 (2014)Google Scholar
  17. 17.
    Xue, Y., Wang, X., Chen, X., Hu, J., Gao, M.-T., Li, J.: Effects of different cellulases on the release of phenolic acids from rice straw during saccharification. Bioresour. Technol. 234, 208–216 (2017)CrossRefGoogle Scholar
  18. 18.
    Zheng, W., Zheng, Q., Xue, Y., Hu, J., Gao, M.-T.: Influence of rice straw polyphenols on cellulase production by Trichoderma reesei. J. Biosci. Bioeng. 123(6), 731–738 (2017)CrossRefGoogle Scholar
  19. 19.
    Wang, X., Tsang, Y.F., Li, Y., Ma, X., Cui, S., Zhang, T.-A., Hu, J., Gao, M.-T.: Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis. Bioresour. Technol. 244, 1059–1067 (2017)CrossRefGoogle Scholar
  20. 20.
    Chen, X., Xue, Y., Hu, J., Tsang, Y.F., Gao, M.-T.: Release of polyphenols is the major factor influencing the bioconversion of rice straw to lactic acid. Appl. Biochem. Biotechnol. 183(3), 685–698 (2017)CrossRefGoogle Scholar
  21. 21.
    Zheng, W., Chen, X., Xue, Y., Hu, J., Gao, M.-T., Tsang, Y.F.: The influence of soluble polysaccharides derived from rice straw upon cellulase production by Trichoderma reesei. Process Biochem. 61, 130–136 (2017)CrossRefGoogle Scholar
  22. 22.
    Chen, X., Wang, X., Xue, Y., Zhang, T.-A., Hu, J., Tsang, Y.F., Gao, M.-T.: Tapping the bioactivity potential of residual stream from its pretreatments may be a green strategy for low-cost bioconversion of rice straw. Appl. Biochem. Biotechnol. 186(3), 507–524 (2018)CrossRefGoogle Scholar
  23. 23.
    Chen, Q., Li, T., Gui, M., Liu, S., Zheng, M., Ni, J.: Effects of ZnO nanoparticles on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresour. Technol. 239, 21–27 (2017)CrossRefGoogle Scholar
  24. 24.
    Zhang, X., Hao, L., Hong, K., Yi, Y.: Growth, dendrobine content and photosynthetic characteristics of Dendrobium nobile under different solar irradiances. Plant Omics 7(6), 461–467 (2014)Google Scholar
  25. 25.
    Chen, X., Wang, X., Xue, Y., Zhang, T.A., Li, Y., Hu, J., Tsang, Y.F., Zhang, H., Gao, M.T.: Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae. J. Biosci. Bioeng. 125(6), 703–709 (2018)CrossRefGoogle Scholar
  26. 26.
    Perrin D.D., Watt, A.E.: Complex formation of zinc and cadmium with glutathione. BBA 230(1), 96–104 (1971)Google Scholar
  27. 27.
    Singhal, G.M, Das, N.B., Sharma, R.P.: ChemInform abstract: reaction of nitroalkenes with iodotrimethylsilane: a new method for the conversion of vinyl nitro steroids to keto steroids. Chem. Inform. 21(14), 1470–1471 (1990)Google Scholar
  28. 28.
    Morales, J., Mendoza, L., Cotoras, M.: Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea. J. Appl. Microbiol. 123(4), 969–976 (2017)CrossRefGoogle Scholar
  29. 29.
    Geny, L., Darrieumerlou, A., Doneche, B.: Conjugated polyamines and hydroxycinnamic acids in grape berries during Botrytis cinerea disease development differences between ‘noble rot’ and ‘grey mould’. Aust. J. Grape Wine Res. 9(2), 102–106 (2003)CrossRefGoogle Scholar
  30. 30.
    Dandan, X., Yizhen, D., Pinggen, X., Qi, W., Zide, J., Lingwang, G.: In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biol. Technol. 139, 106–114 (2018)CrossRefGoogle Scholar
  31. 31.
    Polle, A., Otter, T., Seifert, F.: Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies 1). Plant Cell Physiol. 106(1), 53–60 (1994)CrossRefGoogle Scholar
  32. 32.
    AbuQamar, S., Moustafa, K., Tran, L.S.: Mechanisms and strategies of plant defense against Botrytis cinerea. Crit. Rev. Biotechnol. 37(2), 262–274 (2017)CrossRefGoogle Scholar
  33. 33.
    Zhao, P., Ren, A., Dong, P., Sheng, Y., Chang, X., Zhang, X.: The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid. J. Phytopathol. 166(5), 346–354 (2018)CrossRefGoogle Scholar
  34. 34.
    van den Winkel, D., Bastiaans, H.M.M., Bickelhaupt, F.: Phosphasilene synthesis and reactivity: an improved route to 1-(2,4,6-tri-tert-butylphenyl)-2-tert-butyl-2-(2,4,6-tri-isopropylphenyl)phosphasilene. J. Organomet. Chem. 405(2), 183–194 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Bio-energy Crops, School of Life SciencesShanghai UniversityShanghaiChina
  2. 2.Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesChina

Personalised recommendations