Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optimization of Culture Conditions During the Solid-State Fermentation of Tea Residue Using Mixed Strains

  • 26 Accesses

Abstract

In the present research mixed strains of Bacillus subtilis, Aspergillus niger and Saccharomyces cerevisiae were used for solid state fermentation of tea residue. Fermentation conditions were optimized using response surface methodology as: temperature 29.24%, water content 54.14%, fermentation time 5.58 days, B. subtilis: A. niger: S. cerevisiae inoculum ratio 1:1:2. At optimal conditions there was a significant increase in crude protein (CP), the reducing sugar, cellulose activity of 19.32%, 39.5%, 33.3% respectively in comparison with pre-fermentation.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Almajano, M.P., Carbó, R., Jiménez, J.A.L., Gordon, M.H.: Antioxidant and antimicrobial activities of tea infusions. Food Chem. 108, 55–63 (2008)

  2. 2.

    Ayim, I., Ma, H., Ali, Z., Alenyorege, E.A., Donkor, P.O.: Preparation of antioxidant peptides from tea (Camellia sinensis L.) residue. J. Food Meas. Charcat. 12, 2128–2137 (2018)

  3. 3.

    Malkoc, E., Nuhoglu, Y.: Removal of Ni (II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column. J. Hazard. Mater. 135, 328–336 (2006)

  4. 4.

    Yücel, Y., Göycıncık, S.: Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste Biomass Valoriz. 6, 1077–1084 (2015)

  5. 5.

    Yue, N., Kuang, H., Sun, L., Wu, L.H., Xu, C.L.: An empirical analysis of the impact of EU's new food safety standards on China's tea export. Int. J. Food Sci. Technol. 45, 745–750 (2010)

  6. 6.

    Yang, X., Cui, X.: Adsorption characteristics of Pb (II) on alkali treated tea residue. Water Resour. Ind. 3, 1–10 (2013)

  7. 7.

    Krishnapillai, S.: Effect of waste tea (tea fluff) on growth of young tea plants (Camellia sinensis L.). Cancer Res. 69, 3347–3355 (1981)

  8. 8.

    Newey, H., Smyth, D.H.: Intracellular hydrolysis of dipeptides during intestinal absorption. J. Physiol. 152, 367–380 (1960)

  9. 9.

    Dizadji, N., Anaraki, N.A.: Adsorption of chromium and copper in aqueous solutions using tea residue. Int. J. Environ. Sci. Technol. 8, 631–638 (2011)

  10. 10.

    Liu, Y., Lu, F., Chen, G., Snyder, C.L., Jing, S., Yu, L., Wang, J., Jing, X.: High-level expression, purification and characterization of a recombinant medium-temperature α -amylase from Bacillus subtilis. Biotechnol. Lett. 32, 119–124 (2010)

  11. 11.

    Soma, M., Rangasamy, M.: Production of cellulose by Aspergillus niger under submerged and solid-state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42, 1119–1127 (2011)

  12. 12.

    Chanda, S., Chakrabarti, S.: Plant origin liquid waste: a resource for singlecell protein production by yeast. Bioresour. Technol. 57, 51–54 (1996)

  13. 13.

    Ghorai, S., Banik, S.P., Chowdhury, V.S., Mukherjee, S., Khowala, S.: Fungal biotechnology in food and feed processing. Food Res. Int. 42, 577–587 (2009)

  14. 14.

    Herrero, M.L., Vallejo, M.D., Sardella, M.F., Deiana, A.C.: Acid pretreatment of two-phase olive mill waste to improve bioavailable sugars: conditions optimization using response surface methodology. Waste Biomass Valoriz. 6, 37–44 (2015)

  15. 15.

    Yücel, Y.: Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biocatal. Agric. Biotechnol. 1, 39–44 (2012)

  16. 16.

    Rai, K.P., Zhang, C., Wen, S.X.: Effects of pure starter cultures on physico-chemical and sensory quality of dry fermented Chinese-style sausage. J. Food Sci. Technol. 47, 188–194 (2010)

  17. 17.

    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

  18. 18.

    Anson, M.L.: The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22, 79–89 (1938)

  19. 19.

    Wang, F., Ni, H., Cai, H.N., Xiao, A.F.: Tea stalks—a novel agro-residue for the production of tannase under;solid state fermentation by Aspergillus nigerJMU-TS528. Ann. Microbiol. 63, 897–904 (2013)

  20. 20.

    Chatterjee, R., Dutta, A., Banerjee, R., Bhattacharyya, B.C.: Production of tannase by solid-state fermentation. Bioprocess Biosyst. Eng. 14, 159–162 (1996)

  21. 21.

    Sabu, A., Pandey, A., Jaafar, M. D., Szakacs, G.: Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour. Technol. 96, 1223–1228 (2005)

  22. 22.

    Kar, B., Banerjee, R., Bhattacharyya, B.C.: Microbial production of gallic acid by modified solid state fermentation. J. Ind. Microbiol. Biotechnol. 23, 173–177 (1999)

  23. 23.

    Maehara, L., Pereira, S.C., Silva, A.J., Farinas, C.S.: One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi. Biotechnol. Prog. 34, 671–680 (2018)

  24. 24.

    Buzzini, P., Gobbetti, M., Rossi, J., Ribaldi, M.: Utilization of grape must and concentrated rectified grape must to produce gluconic acid by Aspergillus niger, in batch fermentations. Biotechnol. Lett. 15, 151–156 (1993)

  25. 25.

    Kashyap, P., Sabu, A., Pandey, A., Szakacs, G., Soccol, C.R.: Extracellular l-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem. 38, 307–312 (2002)

  26. 26.

    Banerjee, D., Mondal, K.C., Pati, B.R.: Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol. Immunol. Hung. 54, 159–166 (2007)

  27. 27.

    Vu, V.H., Pham, T.A., Kim, K.: Improvement of fungal cellulases production by mutation and optimization of solid-state fermentation. Mycobiol. 39, 20–25 (2011)

  28. 28.

    Mekala, N.K., Singhania, R.R., Sukumaran, R.K., Pandey, A.: Cellulase production under solid state fermentation by Trichodermareesei RUT-30: statistical optimization of process parameters. Appl. Biochem. Biotechnol. 151, 122–131 (2008)

  29. 29.

    Schumann, W.: Production of recombinant proteins in Bacillus subtilis. Adv. Appl. Microbiol. 27, 137–189 (2007)

  30. 30.

    Zhang, X.Z., Zhang, Y.H.P.: One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: opportunities and challenges. Eng. Life Sci. 10, 398–406 (2010)

  31. 31.

    Li, W., Zhou, X., Lu, P.: Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res. Microbiol. 155, 605–610 (2004)

  32. 32.

    Bailey, M.J., Tähtiharju, J.: Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl. Microbiol. Biotechnol. 62, 156–162 (2003)

  33. 33.

    Sanghi, A., Garg, N., Kuhar, K., Kuhad, R.C., Gupta, V.K.: Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. BioResources 4, 1109–1129 (2009)

  34. 34.

    Reese, E.T., Siu, R.G.H., Levinson, H.S.: The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59, 485–497 (1950)

  35. 35.

    Wood, T.M., Mccrae, S.I.: Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181, 181–209 (1979)

  36. 36.

    Cunha, F.M., Esperança, M.N., Zangirolami, T.C., Badino, A.C., Farinas, C.S.: Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour. Technol. 112, 270–274 (2012)

  37. 37.

    Asha, B.M., Sakthivel, N.: Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkalophilic and solvent-tolerant properties. Ann. Microbiol. 64, 1839–1848 (2014)

  38. 38.

    Li, X., Yu, H.Y.: Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. J. Ind. Microbiol. Biotechnol. 39, 1117–1124 (2012)

  39. 39.

    Kang, L.H., L-Mu, L.I., Xiong-Yuan, S.I., Bin, L.I., Guo, W.J., Hua, M.U., Ding, X.L., Fa-Zhi, X.U.: Screening of the strains and antioxidant activity of small peptide from solid-state fermentation of the residue from wheat alcohol processing. Food Ferment. Ind. 40, 72–76 (2014).

  40. 40.

    Kumar, S., Sharma, H.K., Sarkar, B.C.: Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid-state fermentation (SSF). Food Sci. Biotechnol. 20, 1289–1298 (2011)

  41. 41.

    Marcus, S., Ajay, S., Ward, O.P.: Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1 (2004)

  42. 42.

    Nawab, A., Nimat, U., Muhammad, Q., Hazir, R., Shahid, K., Abdul, S., Muhammad, A.: Molecular characterization and growth optimization of halo-tolerant protease producing Bacillus Subtilis strain BLK-1.5 isolated from salt mines of Karak. Pakistan. Extremophiles. 20, 1–8 (2016)

  43. 43.

    Yang, J.K., Shih, I.L., Tzeng, Y.M., Wang, S.L.: Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes☆☆. Enzyme Microb. Technol. 26, 406–413 (2000)

  44. 44.

    Paranthaman, R., Alagusundaram, K., Indhumathi, J.: Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation. World J. Agric. Sci. 5, 308–312 (2009)

  45. 45.

    Chakraborty, R., Srinivasan, M., Sarkar, S.K., Raghavan, K.V.: Production of acid protease by a new Aspergillus niger by solid state fermentation. J. Microbiol. Biotechnol. 10, 17–30 (1995)

  46. 46.

    Pel, H.J., de Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J., Turner, G., de Vries, R.P., Albang, R., et al.: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25, 221–231 (2007)

  47. 47.

    Braaksma, M., Smilde, A.K., Werf, M.J.V.D., Punt, P.J.: The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger. Microbiology 155, 3430–3439 (2009)

Download references

Acknowledgements

The authors would like to thank Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, for supporting this study. Moreover, the careful teaching and help of Professor Qian Lichun during the experiment.

Funding

This research was supported by Dabeinong Funds for Discipline Development and supported by Major Science and Technology Projects in Zhejiang Province (2015C02022).

Author information

Correspondence to Jinghui Fan or Lichun Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Yao, L., Hou, Y. et al. Optimization of Culture Conditions During the Solid-State Fermentation of Tea Residue Using Mixed Strains. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-019-00930-4

Download citation

Keywords

  • Fermented tea residue
  • Bacillus subtilis
  • Aspergillus niger
  • Saccharomyces cerevisiae
  • Response surface methodology