Catalytic Valorization of Expired Fructan-Rich Food into the Biofuel 5-Ethoxymethylfurfural via a Restaurant Food Waste-Derived Carbonaceous Solid Acid

  • Luxin ZhangEmail author
  • Lu Tian
  • Guoyun Xi
  • Ruijun Sun
  • Xin Zhao
Original Paper


Valorization of food waste into value-added fuels or chemicals is of considerable significance. Herein, an efficient catalytic approach was developed for transforming expired fructan-rich food (probiotics beverage powder, onion powder and garlic powder that have expired) into the biofuel, 5-ethoxymethylfurfural (EMF), via a carbonaceous solid acid synthesized by hydrothermal carbonization and sulfonation of restaurant food waste. The as-prepared restaurant food waste-derived carbonaceous solid acid catalyst (FW-SO3H) was well-characterized by a series of model physical and chemical technologies, and its catalytic performances were evaluated by the ethanolysis of expired fructan-rich food for EMF synthesis. The effects of reaction process variables were investigated. A considerable EMF yield of 52.1% from expired probiotics beverage powder was obtained in DMSO/ethanol medium at 140 °C for 4 h. EMF yields of 20.4% and 11.7% were achieved from expired onion powder and expired garlic powder, respectively. This work provides a valorization strategy for both expired fructan-rich food and restaurant food waste.

Graphic Abstract


Fructan-rich food expired the shelf life Restaurant food waste Valorization Biofuel 5-Ethoxymethylfurfural 



The authors gratefully acknowledge National Natural Science Foundation of China (21607119), Special Funds of the Education Department of Shaanxi Province (19JK0475), Young Talents Support Program of Colleges and Universities Association for Science and Technology of Shaanxi Province (20190420),Innovative Talents Promotion Plan-Science and Technology Innovation Group of Shaanxi Province (2019TD-025), and the 14th SSRT programme of Xi’an University of Architecture and Technology (1491) for the financial support. In addition, we thank Junping Xiang and Wen Sun for assistance with the experiments.

Supplementary material

12649_2019_904_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 79 kb)


  1. 1.
    Xue, L., Liu, G., Parfitt, J., Liu, X., Van, H.E., Stenmarck, A., Oonnor, C., Östergren, K., Cheng, S.: Missing food, missing data? A critical review of global food losses and food waste data. Environ. Sci. Technol. 51(12), 6618–6633 (2017)CrossRefGoogle Scholar
  2. 2.
    Luque, R., Clark, J.H.: Valorization of food waste to biofuel: current trends and technological challenges. Sustain. Chem. Process. 1(10), 1–3 (2013)Google Scholar
  3. 3.
    Pham, T.P., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R.: Food waste-to-energy conversion technologies: current status and future directions. Waste Manage. 38, 399–408 (2015)CrossRefGoogle Scholar
  4. 4.
    Efthymiopoulos, I., Hellier, P., Ladommatos, N., Kay, A., Mills-Lamptey, B.: Effect of solvent extraction parameters on the recovery of oil from spent coffee grounds for biofuel production. Waste Biomass Valoriz. 10(2), 253–264 (2019)CrossRefGoogle Scholar
  5. 5.
    Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. 10(2), 235–251 (2019)CrossRefGoogle Scholar
  6. 6.
    Chen, S.S., Yu, I.K.M., Tsang, D.C.W., Yip, A.C.K., Khan, E., Wang, L., Ok, Y.S., Poon, C.S.: Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: temperature and solvent effects. Chem. Eng. J. 327, 328–335 (2017)CrossRefGoogle Scholar
  7. 7.
    Yu, I.K.M., Tsang, D.C.W., Yip, A.C.K., Chen, S.S., Ok, Y.S., Poon, C.S.: Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps. Bioresour. Technol. 219, 338–347 (2016)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Ding, G., Yang, X., Zheng, H., Zhu, Y., Li, Y.: Selectively convert fructose to furfural or hydroxymethylfurfural on beta zeolite: the manipulation of solvent effects. Appl. Catal. B 235, 150–157 (2018)CrossRefGoogle Scholar
  9. 9.
    Agarwal, B., Kailasam, K., Sangwan, R.S., Elumalai, S.: Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: a review. Renew. Sustain. Energy Rev. 82, 2408–2425 (2018)CrossRefGoogle Scholar
  10. 10.
    Flannelly, T., Dooley, S., Leahy, J.J.: Reaction pathway analysis of ethyl levulinate and 5-ethoxymethylfurfural fromd-fructose acid hydrolysis in ethanol. Energy Fuels 29(11), 7554–7565 (2015)CrossRefGoogle Scholar
  11. 11.
    Alipour, S., Omidvarborna, H., Kim, D.S.: A review on synthesis of alkoxymethyl furfural, a biofuel candidate. Renew. Sustain. Energy Rev. 71, 908–926 (2017)CrossRefGoogle Scholar
  12. 12.
    Zhu, S., Guo, J., Wang, X., Wang, J., Fan, W.: Alcoholysis: a promising technology for conversion of lignocellulose and platform chemicals. Chemsuschem 10(12), 2547–2559 (2017)CrossRefGoogle Scholar
  13. 13.
    Yu, S.-B., Zang, H.J., Yang, X.L., Zhang, M.C., Xie, R.R., Yu, P.F.: Highly efficient preparation of 5-hydroxymethylfurfural from sucrose using ionic liquids and heteropolyacid catalysts in dimethyl sulfoxide–water mixed solvent. Chin. Chem. Lett. 28(7), 1479–1484 (2017)CrossRefGoogle Scholar
  14. 14.
    Zuo, M., Le, K., Feng, Y., Xiong, C., Li, Z., Zeng, X., Tang, X., Sun, Y., Lin, L.: An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Ind. Crop. Prod. 112, 18–23 (2018)CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Chen, Q.: Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chem. 18(21), 5884–5889 (2016)CrossRefGoogle Scholar
  16. 16.
    Li, H., Saravanamurugan, S., Yang, S., Riisager, A.: Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts. Green Chem. 18(3), 726–734 (2016)CrossRefGoogle Scholar
  17. 17.
    Li, H., Govind, K.S., Kotni, R., Shunmugavel, S., Riisager, A., Yang, S.: Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres. Energy Convers. Manage. 88, 1245–1251 (2014)CrossRefGoogle Scholar
  18. 18.
    Guo, H., Duereh, A., Hiraga, Y., Aida, T.M., Qi, X., Smith, R.L.: Perfect recycle and mechanistic role of hydrogen sulfate ionic liquids as additive in ethanol for efficient conversion of carbohydrates into 5-ethoxymethylfurfural. Chem. Eng. J. 323, 287–294 (2017)CrossRefGoogle Scholar
  19. 19.
    Cao, L., Yu, I.K.M., Chen, S.S., Tsang, D.C.W., Wang, L., Xiong, X., Zhang, S., Ok, Y.S., Kwon, E.E., Song, H., Poon, C.S.: Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour. Technol. 252, 76–82 (2017)CrossRefGoogle Scholar
  20. 20.
    Tang, H., Li, N., Chen, F., Li, G., Wang, A., Cong, Y., Wang, X., Zhang, T.: Highly efficient synthesis of 5-hydroxymethylfurfural with carbohydrates over renewable cyclopentanone-based acidic resin. Green Chem. 19(8), 1855–1860 (2017)CrossRefGoogle Scholar
  21. 21.
    Xiong, X., Yu, I., Cao, L., Dcw, T., Zhang, S., Ok, Y.S.: A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour. Technol. 246, 254–270 (2017)CrossRefGoogle Scholar
  22. 22.
    Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M.: Green chemistry: biodiesel made with sugar catalyst. Nature 438(7065), 178 (2005)CrossRefGoogle Scholar
  23. 23.
    Chen, T., Peng, L., Yu, X., He, L.: Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel 219, 344–352 (2018)CrossRefGoogle Scholar
  24. 24.
    Huang, M., Luo, J., Fang, Z., Li, H.: Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Appl. Catal. B 190, 103–114 (2016)CrossRefGoogle Scholar
  25. 25.
    Bai, C., Zhu, L., Shen, F., Qi, X.: Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid. Bioresour. Technol. 220, 656–660 (2016)CrossRefGoogle Scholar
  26. 26.
    Noshadi, I., Kanjilal, B., Liu, F.: Porous carbonaceous solid acids derived from farm animal waste and their use in catalyzing biomass transformation. Appl. Catal. A 513, 19–29 (2016)CrossRefGoogle Scholar
  27. 27.
    Yan, L., Liu, N., Wang, Y., Machida, H., Qi, X.: Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst. Bioresour. Technol. 173, 462–466 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhao, K., Liu, S., Li, K., Hu, Z., Yuan, Y., Yan, L., Guo, H., Luo, X.: Fabrication of −SO3H functionalized aromatic carbon microspheres directly from waste Camellia oleifera shells and their application on heterogeneous acid catalysis. Mol. Catal. 433, 193–201 (2017)CrossRefGoogle Scholar
  29. 29.
    Xiao, H., Guo, Y., Liang, X., Qi, C.: One-step synthesis of novel biacidic carbon via hydrothermal carbonization. J. Solid State Chem. 183(7), 1721–1725 (2010)CrossRefGoogle Scholar
  30. 30.
    Xing, R., Liu, N., Liu, Y., Wu, H., Jiang, Y., Chen, L., He, M., Wu, P.: Novel solid acid catalysts: sulfonic acid group-functionalized mesostructured polymers. Adv. Funct. Mater. 17(14), 2455–2461 (2007)CrossRefGoogle Scholar
  31. 31.
    Inczédy, J.: Thermoanalytical investigation of ion exchange resins. The swelling water of anion exchange resins. J. Therm. Anal. 13(2), 257–261 (1978)CrossRefGoogle Scholar
  32. 32.
    Xiang, B., Wang, Y., Qi, T., Yang, H.-Q., Hu, C.-W.: Promotion catalytic role of ethanol on Brønsted acid for the sequential dehydration-etherification of fructose to 5-ethoxymethylfurfural. J. Catal. 352, 586–598 (2017)CrossRefGoogle Scholar
  33. 33.
    Yang, Y., Hu, C., Abu-Omar, M.M.: Conversion of glucose into furans in the presence of AlCl3 in an ethanol-water solvent system. Bioresour. Technol. 116(7), 190–194 (2012)CrossRefGoogle Scholar
  34. 34.
    Quereshi, S., Ahmad, E., Pant, K.K., Dutta, S.: Insights into the metal salt catalyzed ethyl levulinate synthesis from biorenewable feedstocks. Catal. Today 291, 187–194 (2017)CrossRefGoogle Scholar
  35. 35.
    Morales, G., Paniagua, M., Melero, J.A., Iglesias, J.: Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent. Catal. Today 279, 305–316 (2017)CrossRefGoogle Scholar
  36. 36.
    Sun, Y., Zhang, Q., Zhang, P., Song, D., Guo, Y.: Nitrogen-doped carbon-based acidic ionic liquid hollow nanospheres for efficient and selective conversion of fructose to 5-ethoxymethylfurfural and ethyl levulinate. ACS Sustain. Chem. Eng. 6(5), 6771–6782 (2018)CrossRefGoogle Scholar
  37. 37.
    Wang, H., Deng, T., Wang, Y., Cui, X., Qi, Y., Mu, X., Hou, X., Zhu, Y.: Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem. 15(9), 2379–2383 (2013)CrossRefGoogle Scholar
  38. 38.
    Wang, H., Deng, T., Wang, Y., Qi, Y., Hou, X., Zhu, Y.: Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural. Bioresour. Technol. 136, 394–400 (2013)CrossRefGoogle Scholar
  39. 39.
    Vasudevan, V., Mushrif, S.H.: Insights into the solvation of glucose in water, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and N, N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals. RSC Adv. 5, 20756–20763 (2015)CrossRefGoogle Scholar
  40. 40.
    Liu, B., Zhang, Z., Lv, K., Deng, K., Duan, H.: Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide. Appl. Catal. A 472(3), 64–71 (2014)CrossRefGoogle Scholar
  41. 41.
    Liu, X., Li, H., Pan, H., Zhang, H., Huang, S., Yang, K., Xue, W., Yang, S.: Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers. J. Energy Chem. 25(3), 523–530 (2016)CrossRefGoogle Scholar
  42. 42.
    Shimizu, K.I., Uozumi, R., Satsuma, A.: Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal. Commun. 10(14), 1849–1853 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Environmental and Municipal Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Key Laboratory of Environmental Engineering, Shaanxi ProvinceXi’an University of Architecture and TechnologyXi’anPeople’s Republic of China

Personalised recommendations