Advertisement

Spectral, In Vitro Biological, Engine and Emission Performances of Biodiesel Production from Chlorella protothecoides: A Sustainable Renewable Energy Source

  • Sundaram Arvindnarayan
  • Sutha Shobana
  • Jeyaprakash Dharmaraja
  • Dinh Duc Nguyen
  • Soon Woong Chang
  • A. E. Atabani
  • Gopalakrishnan KumarEmail author
  • Kandasamy K. Sivagnana PrabhuEmail author
Original Paper
  • 26 Downloads

Abstract

In this research, microalgae species, Chlorella protothecoides was selected for biodiesel production due to its ability to produce large amount of hydrocarbons and oils with high lipid composition. The extracted bio-oil was characterized systematically by proximate, ultimate, spectral (FT-IR, UV–vis., GC–Mass, 1H NMR and 13C NMR) and thermogravimetric (TG/DTA) techniques. The fuel characterization of the bio-oil was evaluated using standard methods. The bio-oil samples were examined for their notable in vitro antimicrobial as well as antioxidant activities. The engine parameters unlike brake specific fuel consumption and brake thermal efficiency for three fuel samples namely diesel (B100), microalga biodiesel 20% blend (CB20) and microalga biodiesel 50% blend (CB50) along with their emission characteristics towards CO2, NOx, and HCs were measured.

Graphic Abstract

Chlorella protothecoides micro alga was selected for bio-oil extraction. The bio-oil extracted was characterized by proximate, elemental, spectral and thermogravimetric techniques and their biodiesel potentiality, the fuel properties were evaluated using standard methods, consequently compared to the standards. In addition, the bio-oil samples were tested for their in vitro antimicrobial and antioxidant activities. The fuel properties show that the microalgae bio-diesel has a cold filter plugging point (CFPP) around –13 °C with 4.5 h oxidation stability. The micro algal oil produces high efficiency (ηbth), low BSFC with lesser CO, (NO)x and hydrocarbons emissions with a single cylinder, water cooled, DI four stroke diesel engines using algae oil blends which is an alternative to diesel engine. Moreover, CB50 blend has a good combustion and emission characteristics when compared to CB20 and B100 fuels.

Keywords

Chlorella protothecoides GC–mass In vitro biological Engine parameters Emission characteristics 

Notes

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (Grant No. 20194110300040 and Grant No. 20173010092470). The authors would also like to acknowledge STIC, CUSAT, Cochin for giving the analytical facilities.

References

  1. 1.
    Demirbas, A., Fatih Demirbas, M.: Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 52, 163–170 (2011)CrossRefGoogle Scholar
  2. 2.
    Chen, Y.H., Huang, B.Y., Chiang, T.H., Tang, T.C.: Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel 94, 270–273 (2012)CrossRefGoogle Scholar
  3. 3.
    Al-lwayzy, S.H., Yusaf, T., Al-Juboori, R.A.: Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies 7(3), 1829–1851 (2014)CrossRefGoogle Scholar
  4. 4.
    Cadenas, A., Cabezndo, S.: Biofuels as sustainable technologies: perspectives for less developed countries. Tech. Forecast Soc. Change 58, 83–103 (1998)CrossRefGoogle Scholar
  5. 5.
    Ghayal, M.S., Pandya, M.T.: Microalgae biomass: a renewable source of energy. Energy Proced. 32, 242–250 (2013)CrossRefGoogle Scholar
  6. 6.
    Boyles, D.T: Bioenergy Technology, Thermodynamics, and Costs. Halsted Press, New York (1984)Google Scholar
  7. 7.
    Demirbas, A.: Production of biodiesel from algae oils. Energy Sources A 31, 163–168 (2009)CrossRefGoogle Scholar
  8. 8.
    Lewicki, A., Dach, J., Janczak, D., Czekala, W.: The experimental photoreactor for microalgae production. Proc. Tech. 8, 622–627 (2013)CrossRefGoogle Scholar
  9. 9.
    Blair, M.F., Kokabian, B., Gude, V.G.: Light and growth medium effect on Chlorella vulgaris biomass production. J. Environ. Chem. Eng. 2, 665–674 (2014)CrossRefGoogle Scholar
  10. 10.
    Khan, S.A., Hussain, M.Z., Prasad, S., Banerjee, U.: Prospects of biodiesel production from microalgae in India. Renew. Sust. Energ. Rev. 13, 2361–2372 (2009)CrossRefGoogle Scholar
  11. 11.
    Jian-Ming, L.V., Li-Hua, C., Xin-Hua, X., Lin, Z., Huan-Lin, C.: Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101, 6797–6804 (2010)CrossRefGoogle Scholar
  12. 12.
    Hyka, P., Lickova, S., Pribyl, P., Melzoch, K., Kovar, K.: Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol. Adv. 31(1), 2–16 (2013)CrossRefGoogle Scholar
  13. 13.
    Juneja, A., Ceballos, R.M., Murthy, G.S.: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9), 4607–4638 (2013)CrossRefGoogle Scholar
  14. 14.
    Sharma, K.K., Schuhmann, H., Schenk, P.M.: High lipid induction in microalgae for biodiesel production. Energies 5(5), 1532–1553 (2012)CrossRefGoogle Scholar
  15. 15.
    Slade, R., Bauen, A.: Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 5, 29–38 (2013)CrossRefGoogle Scholar
  16. 16.
    Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.: Biofuels from microalgae. Biotechnol. Prog. 24(4), 815–820 (2008)Google Scholar
  17. 17.
    Feofilova, E.P., Sergeeva, Y.E., Ivashechkin, A.A.: Biodiesel-fuel: content, production, producers, contemporary biotechnology (Review). Appl. Biochem. Microbiol. 46, 369–378 (2010)CrossRefGoogle Scholar
  18. 18.
    Juntila, D.J., Bautista, M.A., Monotilla, W.: Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions. Bioresour. Technol. 191, 3–6 (2015)CrossRefGoogle Scholar
  19. 19.
    Krohn, B.J., McNeff, C.V., Yan, B., Nowlan, D.: Production of algae-based biodiesel using the continuous catalytic Mcgyan process. Bioresour. Technol. 102, 94–100 (2011)CrossRefGoogle Scholar
  20. 20.
    Amin, S.: Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manag. 50(7), 1834–1840 (2009)CrossRefGoogle Scholar
  21. 21.
    Saharan, B.S., Sharma, D., Sahu, R., Sahin, O., Warren, A.: Towards algal biofuel production: a concept of green bio energy development. Innov. Rom. Food Biotechnol. 12, 1–21 (2013)Google Scholar
  22. 22.
    Perrin, D.D., Armarego, W.L.F., Perrin, D.R.: Purification of Laboratory Chemicals. Pergamo Press, Oxford (1980)Google Scholar
  23. 23.
    Mistry, B.B.: A Handbook of Spectroscopic Data Chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy). Oxford Book Company, Jaipur, pp. 27–63 (2009)Google Scholar
  24. 24.
    Arvindnarayan, S., Sivagnana Prabhu, K.K., Shobana, S., Pasupathy, A., Dharmaraja, J., Kumar, G.: Potential assessment of micro algal lipids: a renewable source of energy. J. Energy Inst. 90(30), 431–440 (2017)CrossRefGoogle Scholar
  25. 25.
    Arvindnarayan, S., Sivagnana Prabhu, K.K., Shobana, S., Dharmaraja, J., Pasupathy, A.: Algal biomass energy carriers as fuels: an alternative green source. J. Energy Inst. 90(2), 300–315 (2017)CrossRefGoogle Scholar
  26. 26.
    Yaşar, F., Altun, S.: Biodiesel properties of microalgae (Chlorella protothecoides) oil for use in diesel engines. Int. J Green Energy. 15(14–15), 941–946 (2018)CrossRefGoogle Scholar
  27. 27.
    Al-Lwazy, S.H., Yusaf, T.: Chlorella protothecoides microalgae as an alternative fuel for tractor diesel engines. Energies 6(2), 766–783 (2013)CrossRefGoogle Scholar
  28. 28.
    Gülyurt, M.O., Özçimen, D., İnan, B.: Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. Int. J. Mol. Sci. 17(4), 579–587 (2016)CrossRefGoogle Scholar
  29. 29.
    Holbrook, G.P., Davidson, Z., Tatara, R.A., Ziemer, N.L., Rosentrater, K.A., Scott Grayburn, W.: Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: cultivation and fuel characteristics. Appl. Energy 131, 386–393 (2014)CrossRefGoogle Scholar
  30. 30.
    Nautiyal, P., Subramanian, K.A., Dastidar, M.G.: Production and characterization of biodiesel from algae. Fuel Process. Technol. 120, 79–88 (2014)CrossRefGoogle Scholar
  31. 31.
    Sivakumar, G., Xu, J., Thompson, R.W., Yang, Y., Randol-Smithd, P., Weathers, P.J.: Integrated green algal technology for bioremediation and biofuel. Bioresour. Technol. 107, 1–9 (2012)CrossRefGoogle Scholar
  32. 32.
    Xu, H., Miao, X., Wu, Q.: High quality biodiesel production from a microalgae Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotech. 126(4), 499–507 (2006)CrossRefGoogle Scholar
  33. 33.
    Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A., Tegou, E.: Applications of fourier transform-infrared spectroscopy to edible oils. Anal. Chimica Acta 573–574, 459–465 (2006)CrossRefGoogle Scholar
  34. 34.
    Indhumathi, P., Syed Shabudeen, P.S., Shoba, U.S.: A method for production and characterization of biodiesel from Green Micro Algae. Int. J. Bio-Sci. Bio-Technol. 6(5), 111–122 (2014)CrossRefGoogle Scholar
  35. 35.
    Stansell, G.R., Gray, V.M., Sym, S.D.: Microalgal fatty acid composition: implications for biodiesel quality. J. Appl. Phycol. 24(4), 791–801 (2012)CrossRefGoogle Scholar
  36. 36.
    Dash, A., Banerjee, R.: In silico optimization of lipid yield utilizing mix-carbon sources for biodiesel production from Chlorella minutissima. Energy Convers. Manage. 164, 533–542 (2018)CrossRefGoogle Scholar
  37. 37.
    Tang, H., Chen, M., Garcia, M.E.D., Abunasser, N., Simon Ng, K.Y., Salley, S.O.: Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol. Bioeng. 108(10), 2280–2287 (2011).CrossRefGoogle Scholar
  38. 38.
    Song, M., Pei, H., Hu, W., Ma, G.: Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour. Technol. 141, 245–251 (2013)CrossRefGoogle Scholar
  39. 39.
    Singh, S.K., Bansal, A., Jha, M.K., Jain, R.: Production of biodiesel from wastewater grown Chlorella minutissima. Ind. J. Chem. Tech. 20, 341–345 (2013)Google Scholar
  40. 40.
    Dash, A., Banerjee, R.: Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: an integrated approach. Bioresour. Technol. 238, 502–509 (2017)CrossRefGoogle Scholar
  41. 41.
    Chakraborty, S., Mohanty, D., Ghosh, S., Das, D.: Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production. J. Biosci. Bioeng. 122(3), 294–300 (2016)CrossRefGoogle Scholar
  42. 42.
    Prartono, T., Kawaroe, M., Katili, V.: Fatty acid composition of three diatom species Skeletonemaco statum, Thalassiosira sp. and Chaetoceros gracilis. Int. J. Environ. Bioenergy 6(1), 28–43 (2013)Google Scholar
  43. 43.
    Casas, A., Ramos, M.J., Perez, A., Simon, A., Lucas-Torres, C., Moreno, A.: Rapid quantitative determination by 13C NMR of the composition of acetylglycerol mixtures as byproduct in biodiesel synthesis. Fuel 92(1), 180–186 (2012)CrossRefGoogle Scholar
  44. 44.
    Peng, W., Wu, Q., Tu, P., Zhao, N.: Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour. Technol. 80, 01–07 (2001)CrossRefGoogle Scholar
  45. 45.
    da Silva, V.M., Silva, L.A., de Andrade, J.B., Veloso, M.C., Santos, G.V.: Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quimi. Nova 31(4), 901–905 (2008).CrossRefGoogle Scholar
  46. 46.
    Gui, M.M., Lee, K.T., Bhatia, S.: Supercritical ethanol technology for the production of biodiesel: process optimization studies. J. Supercrit. Fluid. 49(2), 286–292 (2009)CrossRefGoogle Scholar
  47. 47.
    Patil, P.D., Reddy, H., Muppaneni, T., Mannarswamy, A., Schuab, T., Holguin, F.O., Hammers, P., Nirmalakhandan, N., Cooke, P., Deng, S.: Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel. Green Chem. 14, 809–818 (2012)CrossRefGoogle Scholar
  48. 48.
    Lopez, C.E., Castro, J.M., Gonzalez, V., Gonzalez, E., Perez, J., Seco, H.M., Fernandez, J.M.: Determination of metal ions in algal solution samples by capillary electrophoresis. J. Chromatogr. Sci. 36, 352–356 (1998)CrossRefGoogle Scholar
  49. 49.
    Drora, K.: Adsorptions and adsorptions of heavy metal by microalgae. In: Richmond, A., Hu, Q. (eds.) Ch.32: Handbook of Microalgae Culture: Applied Phycology and Biotechnology, 2nd ed. Wiley, New York (2013)Google Scholar
  50. 50.
    Blois, M.S.: Antioxidant determinations by the use of a stable free radical. Nature 181, 1199–1200 (1958)CrossRefGoogle Scholar
  51. 51.
    Gumus, M.: A comprehensive experimental investigation of combustion and heat release characteristics of a biodiesel (hazelnut kernel oil methyl ester) fueled direct injection combustion engine. Fuel 89(10), 2802–2814 (2010)CrossRefGoogle Scholar
  52. 52.
    Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S.: Perspectives on microalgal CO2 emission mitigation systems: a review. Biotechnol. Adv. 29(2), 189–198 (2011)CrossRefGoogle Scholar
  53. 53.
    Atmanli, A., Iieri, E., Yuksel, B.: Effects of higher ratios of n–butanol addition to diesel-vegetable oil blends on performance and exhaust emissions of a diesel engine. J. Energy Inst. 88(3), 209–220 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sundaram Arvindnarayan
    • 1
  • Sutha Shobana
    • 2
  • Jeyaprakash Dharmaraja
    • 3
  • Dinh Duc Nguyen
    • 4
    • 5
  • Soon Woong Chang
    • 5
  • A. E. Atabani
    • 6
  • Gopalakrishnan Kumar
    • 7
    Email author
  • Kandasamy K. Sivagnana Prabhu
    • 1
    Email author
  1. 1.Department of Mechanical Engineering Rajas Engineering CollegeVadakangulamIndia
  2. 2.Department of Chemistry and Research CentreMohamed Sathak Engineering CollegeRamanathapuramIndia
  3. 3.Division of Chemistry, Faculty of Science and HumanitiesSree Sowdambika College of EngineeringAruppukottaiIndia
  4. 4.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  5. 5.Department of Environmental Energy EngineeringKyonggi UniversitySuwonRepublic of Korea
  6. 6.Energy Division, Department of Mechanical Engineering, Faculty of EngineeringErciyes UniversityKayseriTurkey
  7. 7.Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations