Advertisement

Concentration of Alkaline Hydrogen Peroxide (AHP) Affects the Recycle of the Liquid Fraction in the Pre-treatment and Enzymatic Hydrolysis of Corn Stover

  • Bárbara Ribeiro Alves Alencar
  • Fernanda Leitão Vaz
  • Adauto Gomes Barbosa Neto
  • Katia Aparecida Aquino
  • Everardo Valadares de Sa Barretto Sampaio
  • Rômulo Simões Cezar Menezes
  • Emmanuel Damilano DutraEmail author
Original Paper
  • 26 Downloads

Abstract

Pre-treatment is one of main economic and technological challenges to render feasible the production of biofuels and chemical compounds from lignocellulosic biomass. Alkaline hydrogen peroxide (AHP) is the most used pre-treatment and recycling of its liquid fraction can help reduce production costs. The effects of four AHP concentrations (1, 3.5, 5 and 7.5% v/v) on the recycling performance of the liquid fraction of pre-treated corn stover was evaluated for five consecutive cycles. Delignification rates increased with increasing AHP concentrations in the first cycle: 15, 26, 43 and 76% with 1, 3.5, 5 and 7.5% v/v H2O2, respectively. In the following cycles, the rates decreased linearly reaching less than 40% in the last two recycles. These delignification rates and hemicellulose solubilization were corroborated by spectroscopic analyses with Fourier transformation showing reductions in lignin and hemicellulose absorbance and increases in crystallinity indices. Considering the low delignification rates in the last two cycles, the pre-treated biomasses obtained until the third cycle were submitted to enzymatic hydrolysis at 1:10 solid–liquid ratio. The delignification rates affected the efficiency of the enzymatic hydrolysis at all AHP concentrations and all recycles. The highest AHP concentration (7.5% v/v) was required to efficiently remove lignin and solubilize hemicellulose, maintaining cellulose conversion into glucose greater than 50% up to three recycles. Therefore, the technology of recycling the liquid solution of AHP pre-treatment is recommended with high initial concentrations (7.5% v/v).

Graphic Abstract

Keywords

Lignocellulosic biomass Pre-treatment Recycle liquid fraction Enzymatic hydrolysis 

Notes

Acknowledgements

The authors acknowledge the researchers Dr. Irapuan Pinheiro and Dr. Rafael Souza, from Universidade de Pernambuco, for making available the liquid chromatograph; CETENE for XRD and FTIR analysis and CNPq, CAPES, FACEPE and MCTI for financial support PEGASUS (Processo 441305/2017-2) and ONDACBC - Observatório Nacional da Dinâmica da Água e do Carbono no Bioma Caatinga (INCT-MCTI/CNPQ/CAPES/FAPs (Processo 465764/2014-2) to this research.

References

  1. 1.
    Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008).  https://doi.org/10.1016/j.enbuild.2007.03.007 CrossRefGoogle Scholar
  2. 2.
    Guo, M., Song, W., Buhain, J.: Bioenergy and biofuels: history, status, and perspective. Renew. Sustain. Energy Rev. 42, 712–725 (2015).  https://doi.org/10.1016/j.rser.2014.10.013 CrossRefGoogle Scholar
  3. 3.
    Wang, W., Chen, X., Tan, X., Wang, Q., Liu, Y., He, M., Yu, Q., Qi, W., Luo, Y., Zhuang, X., Yuan, Z.: Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 228, 235–240 (2017).  https://doi.org/10.1016/j.biortech.2016.12.076 CrossRefGoogle Scholar
  4. 4.
    Fiorentino, G., Ripa, M., Ulgiati, S.: Chemicals from biomass: technological versus environmental feasibility. A review. Biofuels Bioprod. Biorefin. 11, 195–214 (2017).  https://doi.org/10.1002/bbb.1729 CrossRefGoogle Scholar
  5. 5.
    Tye, Y.Y., Lee, K.T., Abdullah, W.N.W., Leh, C.P.: The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Rev. 60, 155–172 (2016).  https://doi.org/10.1016/j.rser.2016.01.072 CrossRefGoogle Scholar
  6. 6.
    Ebadian, M., Sokhansanj, S., Webb, E.: Estimating the required logistical resources to support the development of a sustainable corn stover bioeconomy in the USA. Biofuels Bioprod. Biorefin. 11, 129–149 (2017).  https://doi.org/10.1002/bbb.1736 CrossRefGoogle Scholar
  7. 7.
    Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., Zacchi, G.: Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12), 549–556 (2006).  https://doi.org/10.1016/j.tibtech.2006.10.004 CrossRefGoogle Scholar
  8. 8.
    Rabemanolontsoa, H., Saka, S.: Various pretreatments of lignocellulosics. Bioresour. Technol. 199, 83–91 (2016).  https://doi.org/10.1016/j.biortech.2015.08.029 CrossRefGoogle Scholar
  9. 9.
    Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2, 26–40 (2008).  https://doi.org/10.1002/bbb.49 CrossRefGoogle Scholar
  10. 10.
    Baral, N.R., Shah, A.: Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresour. Technol. 232, 331–343 (2017).  https://doi.org/10.1016/j.biortech.2017.02.068 CrossRefGoogle Scholar
  11. 11.
    Banerjee, G., Car, S., Liu, T., Williams, D.L., Meza, S.L., Walton, J.D., Hodge, D.B.: Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol. Bioeng. 109(4), 922–931 (2012).  https://doi.org/10.1002/bit.24385 CrossRefGoogle Scholar
  12. 12.
    Qing, Q., Zhou, L., Guo, Q., Gao, X., Zhang, Y., He, Y., Zhang, Y.: Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. Bioresour. Technol. 233, 284–290 (2017).  https://doi.org/10.1016/j.biortech.2017.02.106 CrossRefGoogle Scholar
  13. 13.
    Rabelo, S.C., da Costa, A.C., Rossel, C.E.V.: Industrial waste recovery. In: Sugarcane, pp. 365–381. Elsevier, New York (2015)Google Scholar
  14. 14.
    Dutra, E.D., Santos, F.A., Alencar, B.R.A., Reis, A.L.S., de Souza, R.D.F.R., da Silva Aquino, K.A., Menezes, R.S.C.: Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Convers. Biorefin. 8, 225–234 (2018).  https://doi.org/10.1007/s13399-017-0277-3 CrossRefGoogle Scholar
  15. 15.
    Ho, M.C., Ong, V.Z., Wu, T.Y.: Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization—a review. Renew. Sustain. Energy Rev. 112, 75–86 (2019).  https://doi.org/10.1016/j.rser.2019.04.082 CrossRefGoogle Scholar
  16. 16.
    da Costa Correia, J.A., Júnior, J.E.M., Gonçalves, L.R.B., Rocha, M.V.P.: Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Biores. Technol. 139, 249–256 (2013).  https://doi.org/10.1016/j.biortech.2013.03.153 CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Huang, S., Wei, W., Zhang, J., Xie, J.: Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. Biotechnol. Biofuels 12, 107 (2019).  https://doi.org/10.1186/s13068-019-1454-3 CrossRefGoogle Scholar
  18. 18.
    Alencar, B.R.A., Reis, A.L.S., de Souza, R.D.F.R., Morais Jr., M.A., Menezes, R.S.C., Dutra, E.D.: Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover. Bioresour. Technol. 241, 928–935 (2017).  https://doi.org/10.1016/j.biortech.2017.06.022 CrossRefGoogle Scholar
  19. 19.
    Rocha, G.J.M., Nascimento, V.M., Silva, V.F.N.D., Corso, D.L.S., Gonçalves, A.R.: Contributing to the environmental sustainability of the second generation ethanol production: delignification of sugarcane bagasse with sodium hydroxide recycling. Ind. Crops Prod 59, 63–68 (2014).  https://doi.org/10.1016/j.indcrop.2014.05.002 CrossRefGoogle Scholar
  20. 20.
    Yao, F., Tian, D., Shen, F., Hu, J., Zeng, Y., Yang, G., Zhang, Y., Deng, S., Zhang, J.: Recycling solvent system in phosphoric acid plus hydrogen peroxide pretreatment towards a more sustainable lignocellulose biorefinery for bioethanol. Bioresour. Technol. 275, 19–26 (2019).  https://doi.org/10.1016/j.biortech.2018.12.040 CrossRefGoogle Scholar
  21. 21.
    Van Soest, P., Robertson, J., Lewis, B.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)CrossRefGoogle Scholar
  22. 22.
    Kataoka, Y., Kondo, T.: FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31(3), 760–764 (1998).  https://doi.org/10.1021/ma970768c CrossRefGoogle Scholar
  23. 23.
    Song, X., Jiang, Y., Rong, X., Wei, W., Wang, S., Nie, S.: Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Biores. Technol. 216, 1098–1101 (2016).  https://doi.org/10.1016/j.biortech.2016.06.026 CrossRefGoogle Scholar
  24. 24.
    Rabelo, S.C., Fonseca, N.A., Andrade, R.R., Maciel Filho, R., Costa, A.C.: Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenerg. 35, 2600–2607 (2011).  https://doi.org/10.1016/j.biombioe.2011.02.042 CrossRefGoogle Scholar
  25. 25.
    Su, Y., Du, R., Guo, H., Cao, M., Wu, Q., Su, R., Qi, W., He, Z.: Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod. Process. 94, 322–330 (2015).  https://doi.org/10.1016/j.fbp.2014.04.001 CrossRefGoogle Scholar
  26. 26.
    Buranov, A.U., Mazza, G.: Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohydr. Polym. 79(1), 17–25 (2010).  https://doi.org/10.1016/j.carbpol.2009.06.014 CrossRefGoogle Scholar
  27. 27.
    Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100(17), 3948–3962 (2009).  https://doi.org/10.1016/j.biortech.2009.01.075 CrossRefGoogle Scholar
  28. 28.
    Sgriccia, N., Hawley, M.C., Misra, M.: Characterization of natural fiber surfaces and natural fiber composites. Compos. A 39(10), 1632–1637 (2008).  https://doi.org/10.1016/j.compositesa.2008.07.007 CrossRefGoogle Scholar
  29. 29.
    Liu, L., Sun, J., Li, M., Wang, S., Pei, H., Zhang, J.: Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Biores. Technol. 100(23), 5853–5858 (2009).  https://doi.org/10.1016/j.biortech.2009.06.040 CrossRefGoogle Scholar
  30. 30.
    Kumar, R., Mago, G., Balan, V., Wyman, C.E.: Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Biores. Technol. 100(17), 3948–3962 (2009).  https://doi.org/10.1016/j.biortech.2009.01.075 CrossRefGoogle Scholar
  31. 31.
    Díaz, A.B., Blandino, A., Belleli, C., Caro, I.: An effective process for pretreating rice husk to enhance enzyme hydrolysis. Ind. Eng. Chem. Res. 53, 10870–10875 (2014).  https://doi.org/10.1021/ie501354r CrossRefGoogle Scholar
  32. 32.
    Zhao, C., Shao, Q., Ma, Z., Li, B., Zhao, X.: Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind. Crops Prod. 83, 86–93 (2016).  https://doi.org/10.1016/j.indcrop.2015.12.018 CrossRefGoogle Scholar
  33. 33.
    Gould, J.M.: Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol. Bioeng. 27, 225–231 (1985)CrossRefGoogle Scholar
  34. 34.
    Banerjee, G., Car, S., Scott-Craig, J.S., Hodge, D.B., Walton, J.D.: Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 4, 16 (2011).  https://doi.org/10.1186/1754-6834-4-16 CrossRefGoogle Scholar
  35. 35.
    Li, Y., Cui, J., Zhang, G., Liu, Z., Guan, H., Hwang, H., Aker, W.G., Wang, P.: Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour. Technol. 214, 144–149 (2016).  https://doi.org/10.1016/j.biortech.2016.04.090 CrossRefGoogle Scholar
  36. 36.
    Martins, L.H., Rabelo, S.C., da Costa, A.C.: Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour. Technol. 191, 312–321 (2015).  https://doi.org/10.1016/j.biortech.2015.05.024 CrossRefGoogle Scholar
  37. 37.
    Saha, B.C., Cotta, M.A.: Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzym. Microb. Technol. 41(4), 528–532 (2007).  https://doi.org/10.1016/j.enzmictec.2007.04.006 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bárbara Ribeiro Alves Alencar
    • 1
  • Fernanda Leitão Vaz
    • 2
  • Adauto Gomes Barbosa Neto
    • 3
  • Katia Aparecida Aquino
    • 4
  • Everardo Valadares de Sa Barretto Sampaio
    • 2
  • Rômulo Simões Cezar Menezes
    • 2
  • Emmanuel Damilano Dutra
    • 2
    • 5
    Email author
  1. 1.Interdepartmental Research Group in Metabolic Engineering, Department of GeneticsFederal University of PernambucoRecifeBrazil
  2. 2.Research Group on Biomass Energy, Department of Nuclear EnergyFederal University of PernambucoRecifeBrazil
  3. 3.Program of Postgraduation in Genetics, Department of GeneticsFederal University of PernambucoRecifeBrazil
  4. 4.Laboratory of Polymers and Nanotechnology, Department of Nuclear EnergyFederal University of PernambucoRecifeBrazil
  5. 5.Departamento de Energia NuclearUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations