Optimization of C. crescentus β-Xylosidases and Expression of xynB1–5 Genes in Response to Agro-Industrial Waste

  • Juliana Moço Corrêa
  • Elaine Luzia dos Santos
  • Márcia Regina Simões
  • Marina Kimiko Kadowaki
  • Rinaldo Ferreira Gandra
  • Rita de Cássia Garcia SimãoEmail author
Original Paper


The effect of the response surface methodology was applied to the production of Caulobacter crescentus (strain NA1000) β-xylosidases using corn cob. The components of the medium that presented the greatest influence on the enzyme production were chosen for optimization including the concentration of the corn cob residue and temperature variation. Optimal concentrations were determined by a central composite rotational design and a combination of 3.5% (w/v) corn cob concentration and 27 °C temperature was found to be optimal. When C. crescentus was cultivated using the optimized conditions, a maximum activity of 393.36 U/mL of β-xylosidases was achieved in 24-h cultures with a yield of 95% in real test conditions compared to the predicted one. In parallel, there was an increase of 3.6 times in the production of intracellular xylanases when compared to cultures without statistical application. In the C. crescentus genome, 5 genes that encode β-xylosidases are present. In order to evaluate which of them would be induced in the optimized conditions, the quantitative expression (qPCR) of the xynB1xynB5 genes was evaluated in the presence of 1 or 3.5% corn cob (w/v) and surprisingly, all showed a constitutive expression in relation to the control. Assays of Western Blot performed with a polyclonal antiserum against C. crescentus β-xylosidase II in the optimized condition also did not show mass variation of the referred protein. These data strongly suggest that post-transcriptional controls are operating in the induced condition to increase the activity of C. crescentus β-xylosidases I-V, but β-xylosidase II. To our knowledge, this is the first time that these data are reported in literature for a bacterial system.


β-Xylosidases Expression Experimental design Bacteria Agro-industrial wastes 



J.M. Corrêa was a PNPD/CAPES scholar. E.L. Santos was a CNPq scholar. R.C.G. Simão was a productivity scholar at Fundação Araucária.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

12649_2019_881_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)
12649_2019_881_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 13 kb)
12649_2019_881_MOESM3_ESM.doc (30 kb)
Supplementary material 3 (DOC 30 kb)


  1. 1.
    Bosetto, A., Justo, P.I., Zanardi, B., Venzon, S.S., Graciano, L., Santos, E.L., Simão, R.C.G.: Research progress concerning fungal and bacterial beta-xylosidases. Appl. Biochem. Biotechnol. 178, 766–795 (2016)CrossRefGoogle Scholar
  2. 2.
    Corrêa, J.M., Christi, D., Della Torre, C.L., Henn, C., Da Conceição-Silva, J.L., Kadowaki, M.K., Simão, R.C.G.: High levels of & #x03B2;-xylosidase in Thermomyces lanuginosus: potential use for saccharification. Braz. J. Microbiol. 47, 680–690 (2016)CrossRefGoogle Scholar
  3. 3.
    Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L., Crosson, S.: The genetic basis of laboratory adaptation in Caulobacter crescentus. J. Bacteriol. 192, 3678–3688 (2010)CrossRefGoogle Scholar
  4. 4.
    Prade, R.A.: Xylanases: from biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13, 101–131 (1996)CrossRefGoogle Scholar
  5. 5.
    Sharma, H.K., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. 10, 235–251 (2019)CrossRefGoogle Scholar
  6. 6.
    Graciano, L., Corrêa, J.M., Gandra, R.F., Seixas, F.A.V., Kadowaki, M.K., Sampaio, S.C., da Conceição-Silva, Osaku, C.A., Simão, R.C.G.: The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-xylosidase I. World J. Microbiol. Biotechnol. 28, 2879–2888 (2012)CrossRefGoogle Scholar
  7. 7.
    Corrêa, J.M., Graciano, L., Abrahão, J., Loth, E.A., Gandra, R.F., Kadowaki, M.K., Henn, C., Simão, R.C.G.: Expression and characterization of a GH39 β-xylosidase II from Caulobacter crescentus. Appl. Biochem. Biotechnol. 168, 2218–2229 (2012)CrossRefGoogle Scholar
  8. 8.
    Justo, P.I., Corrêa, J.M., Maller, A., Kadowaki, M.K., Da Conceição-Silva, J.L., Gandra, R.F., Simão, R.C.G.: Analysis of the xynB5 gene encoding a multifunctional GH3-BglX β-glucosidase-β-Xylosidases-α-Arabinosidase member in Caulobacter crescentus. Antonie Van Leeuwenhoek 108, 993–1007 (2015)CrossRefGoogle Scholar
  9. 9.
    Graciano, L., Corrêa, J.M., Vieira, F.G.N., Bosetto, A., Loth, E.A., Kadowaki, M.K., Gandra, R.F., Simão, R.C.G.: Cloning and expression of the xynA1 gene encoding a xylanase of the GH10 group in Caulobacter crescentus. Appl. Biochem. Biotechnol. 175, 3915–3929 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, Q., Wu, T., Qi, Z., Zhao, L., Pei, J., Tang, F.: Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum. BMC Biotechnol. 18(1), 29 (2019)CrossRefGoogle Scholar
  11. 11.
    Zhang, S., Xie, J., Zhao, L., Pei, J., Su, E., Xiao, W., Wang, Z.: Cloning, overexpression and characterization of a thermostable β-xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a β-glucosidase. Bio-organ. Chem. 85, 159–167 (2019)Google Scholar
  12. 12.
    Evinger, M., Agabian, N.: Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer. J. Bacteriol. 132, 294–301 (1977)Google Scholar
  13. 13.
    Johnson, R.C., Ely, B.: Isolation of spontaneously derived mutants of Caulobacter crescentus. Genetics 86, 25–32 (1977)Google Scholar
  14. 14.
    Corrêa, J.M., Mingori, M.R., Gandra, R.F., Loth, E.A., Seixas, F.A.V., Simão, R.C.G.: Depletion of the xynB2 gene upregulates β-xylosidase expression in C. crescentus. Appl. Biochem. Biotechnol. 172, 1085–1097 (2014)CrossRefGoogle Scholar
  15. 15.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  16. 16.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  17. 17.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)CrossRefGoogle Scholar
  18. 18.
    Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 76, 4350–4354 (1979)CrossRefGoogle Scholar
  19. 19.
    Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York (1989)Google Scholar
  20. 20.
    Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T.: The Miqe Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009)CrossRefGoogle Scholar
  21. 21.
    Hottes, A.K., Meewan, M., Yang, D., Arana, N., Romero, P., Mcadams, H.H., Stephens, C.: Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J. Bacteriol. 186, 1448–1461 (2004)CrossRefGoogle Scholar
  22. 22.
    Marcolongo, L., La Cara, F., del Monaco, G., Paixão, S.M., Alves, L., Marques, I.P., Ionata, E.: A novel β-xylosidase from Anoxybacillus sp. 3 M towards an improved agro-industrial residues saccharification. Int. J. Biol. Macromol. 122, 1224–1234 (2019)CrossRefGoogle Scholar
  23. 23.
    Vieria, F.G.N., Christ, D., Graciano, L., Corrêa, J.M., Kadowaki, M.K., da Conceição-Silva, J.L., Gandra, R.F., Maller, A., Polizeli, M.L.T.M., Simão, R.C.G.: Experimental design for optimization of β-xylosidase production by A. fumigatus isolated from the Atlantic Forest (Brazil). J. Adv. Biol. Biotechnol. 21(3), 1–16 (2019)CrossRefGoogle Scholar
  24. 24.
    Neumann, A.P., Weimer, P.J., Suen, G.: A global analysis of gene expression in Fibrobacter succinogenes S85 grown on cellulose and soluble sugars at different growth rates. Biotechnol. Biofuels 11, 295 (2018)CrossRefGoogle Scholar
  25. 25.
    Midorikawa, G.E.O., Correa, C.L., Noronha, E.F., Ferreira-Filho, E.X., Togawa, R.C., Costa, M.M.C., Silva-Junior, O.B., Grynberg, P., Miller, R.N.G.: Analysis of the transcriptome in Aspergillus tamarii during enzymatic degradation of sugarcane bagasse. Front. Bioeng. Biotechnol. 6(123), 1–17 (2018)Google Scholar
  26. 26.
    Santos, C.R., Polo, C.C., Corrêa, J.M., Simão, R.C.G., Seixas, F.A.V., Murakami, M.T.: Accessory domain changes accessibility and molecular topography of the catalytic interface in monomeric GH39 & #x03B2;-xylosidases. Acta Crystallogr. Sect. D 68, 1339–1345 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Juliana Moço Corrêa
    • 1
  • Elaine Luzia dos Santos
    • 1
  • Márcia Regina Simões
    • 2
  • Marina Kimiko Kadowaki
    • 1
  • Rinaldo Ferreira Gandra
    • 1
  • Rita de Cássia Garcia Simão
    • 1
    • 3
    Email author
  1. 1.Centro de Ciências Médicas e FarmacêuticasCascavelBrazil
  2. 2.Centro de Engenharias e Ciências ExatasUniversidade Estadual do Oeste do ParanáToledoBrazil
  3. 3.Centro de Ciências Médicas e FarmacêuticasUniversidade Estadual do Oeste do ParanáCascavelBrazil

Personalised recommendations