Integrating Anaerobic Digestion of Pig Slurry and Thermal Valorisation of Biomass

  • J. González-Arias
  • C. Fernández
  • J. G. Rosas
  • M. P. Bernal
  • R. Clemente
  • M. E. Sánchez
  • X. GómezEmail author
Original Paper



The feasibility of coupling the anaerobic digestion of pig manure and co-pyrolysis of its digestate with milk thistle as lignocellulosic biomass was studied. Kinetic analysis was performed along with an evaluation of energy recovery attained from a combined approach


Pig slurry was digested under mesophilic semi-continuous conditions. Digestate was dried and submitted to thermogravimetric analysis under inert atmosphere along with milk thistle samples. Kinetic evaluation was carried out using non-isothermal methods. Assessment of the energy obtained from the combined digestion and pyrolysis process was performed.


Digestion resulted in a yield of 308.5 ± 18.2 mL CH4/g VS. The evaluation of co-pyrolysis of mixtures at different contents of milk thistle showed no interactions between the two materials during pyrolysis. The energy need associated with thermal drying of digestate was 476 MJ/m3 of pig slurry.


Co-pyrolysis of lignocellulosic biomass and digestate [25% content of digestate (w/w)] resulted in a lower char production, associated with the lower ash content of the former. The extra supply of energy needed for thermal drying of the digestate might be obtained from co-pyrolysis with biomass. This approach presented an energy recovery of about 29.4%

Graphic Abstract


Anaerobic digestion Pyrolysis Energy recovery Pig slurry Kinetic analysis 



The authors thank the Spanish Ministry of Economy and Competition (Refs.: CTM2013-48697-C2-1-R and CTQ2015-68925-R) for financial support. J. González-Arias would like to thank the Junta de Castilla y León (Consejería de Educación) fellowship, Orden EDU/1100/2017, co-financed by the European Social Fund.

Supplementary material

12649_2019_873_MOESM1_ESM.docx (19 kb)
ESM_1: Kinetic analysis for determination of the activation energy of thermal degradation of solid samples (DOCX 19 kb)
12649_2019_873_MOESM2_ESM.docx (105 kb)
ESM_2: Results of Ozawa-Flynn-Wall (Doyle’s approximation) and Vyazovkin kinetic estimation method for pig slurry digestate and milk thistle (DOCX 104 kb)
12649_2019_873_MOESM3_ESM.docx (239 kb)
ESM_3: Results of Ozawa-Flynn-Wall (Doyle’s approximation) and Vyazovkin kinetic estimation method for blends of pig slurry digestate and milk thistle (DOCX 238 kb)


  1. 1.
    Singh, R.P., Ibrahim, M.H., Esa, N., Iliyana, M.S.: Composting of waste from palm oil mill: a sustainable waste management practice. Rev. Environ. Sci. Bio/Technol. 9, 331–344 (2010). CrossRefGoogle Scholar
  2. 2.
    de la Fuente, C., Alburquerque, J.A., Clemente, R., Bernal, M.P.: Soil C and N mineralisation and agricultural value of the products of an anaerobic digestion system. Biol. Fertil. Soils. 49, 313–322 (2013). CrossRefGoogle Scholar
  3. 3.
    Yuan, Z., Pan, X., Chen, T., Liu, X., Zhang, Y., Jiang, S., Sheng, H., Zhang, L.: Evaluating environmental impacts of pig slurry treatment technologies with a life-cycle perspective. J. Clean. Prod. 188, 840–850 (2018). CrossRefGoogle Scholar
  4. 4.
    Riya, S., Suzuki, K., Meng, L., Zhou, S., Terada, A., Hosomi, M.: The influence of the total solid content on the stability of dry-thermophilic anaerobic digestion of rice straw and pig manure. Waste Manag. 76, 350–356 (2018). CrossRefGoogle Scholar
  5. 5.
    Risberg, K., Cederlund, H., Pell, M., Arthurson, V., Schnürer, A.: Comparative characterization of digestate versus pig slurry and cow manure—chemical composition and effects on soil microbial activity. Waste Manag. 61, 529–538 (2017). CrossRefGoogle Scholar
  6. 6.
    Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., Henrich, E.: Techno-economic analysis of fast pyrolysis as a process step within biomass-to-liquid fuel production. Waste Biomass Valori. 1, 415–430 (2010). CrossRefGoogle Scholar
  7. 7.
    Vamvuka, D., Sfakiotakis, S.: Thermal behaviour and reactivity of swine sludge and olive by-products during co-pyrolysis and co-combustion. Waste Biomass Valori. (2017). CrossRefGoogle Scholar
  8. 8.
    Hawash, S.I., Farah, J.Y., El-Diwani, G.: Pyrolysis of agriculture wastes for bio-oil and char production. J. Anal. Appl. Pyrolysis. 124, 369–372 (2017). CrossRefGoogle Scholar
  9. 9.
    Wei, Y., Hong, J., Ji, W.: Thermal characterization and pyrolysis of digestate for phenol production. Fuel 232, 141–146 (2018). CrossRefGoogle Scholar
  10. 10.
    Gumisiriza, R., Hawumba, J.F., Okure, M., Hensel, O.: Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol. Biofuels. 10, 11 (2017). CrossRefGoogle Scholar
  11. 11.
    Mao, G., Huang, N., Chen, L., Wang, H.: Research on biomass energy and environment from the past to the future: a bibliometric analysis. Sci. Total Environ. 635, 1081–1090 (2018). CrossRefGoogle Scholar
  12. 12.
    Cao, Y., Pawłowski, A.: Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 16, 1657–1665 (2012). CrossRefGoogle Scholar
  13. 13.
    Fabbri, D., Torri, C.: Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 38, 167–173 (2016). CrossRefGoogle Scholar
  14. 14.
    Ledda, L., Deligios, P.A., Farci, R., Sulas, L.: Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crops Prod. 47, 218–226 (2013). CrossRefGoogle Scholar
  15. 15.
    Bernal, M.P., Gómez, X., Chang, R., Arco-Lázaro, E., Clemente, R.: Strategies for the use of plant biomass obtained in the phytostabilisation of trace-element-contaminated soils. Biomass Bioenerg. 126, 220–230 (2019). CrossRefGoogle Scholar
  16. 16.
    Domínguez, M.T., Montiel-Rozas, M.M., Madejón, P., Díaz, M.J., Madejón, E.: The potential of native species as bioenergy crops on trace-element contaminated Mediterranean lands. Sci. Total Environ. 590–591, 29–39 (2017). CrossRefGoogle Scholar
  17. 17.
    APHA: Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington DC (1998)Google Scholar
  18. 18.
    Dahiya, J.B., Kumar, K., Muller-Hagedorn, M., Bockhorn, H.: Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym. Int. 57, 722–729 (2008). CrossRefGoogle Scholar
  19. 19.
    Cruz, G., Crnkovic, P.M.: Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J. Therm. Anal. Calorim. 123, 1003–1011 (2016). CrossRefGoogle Scholar
  20. 20.
    Ozawa, T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965). CrossRefGoogle Scholar
  21. 21.
    Flynn, J.H., Wall, L.A.: A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B 4, 323–328 (1966). CrossRefGoogle Scholar
  22. 22.
    Doyle, C.D.: Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6, 639–642 (1962). CrossRefGoogle Scholar
  23. 23.
    Vyazovkin, S.: Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J. Comput. Chem. 18, 393–402 (1997).;2-P CrossRefGoogle Scholar
  24. 24.
    Otero, M., Calvo, L.F., Gil, M.V., García, A.I., Morán, A.: Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour. Technol. 99, 6311–6319 (2008). CrossRefGoogle Scholar
  25. 25.
    Sanchez, M.E., Otero, M., Gómez, X., Morán, A.: Thermogravimetric kinetic analysis of the combustion of biowastes. Renew. Energ. 34, 1622–1627 (2009). CrossRefGoogle Scholar
  26. 26.
    Gianico, A., Braguglia, C.M., Gallipoli, A., Mininni, G.: Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance. Environ. Sci. Pollut. R. 22, 7248–7256 (2015). CrossRefGoogle Scholar
  27. 27.
    Zupančič, G.D., Roš, M.: Heat and energy requirements in thermophilic anaerobic sludge digestion. Renew. Energ. 28, 2255–2267 (2003). CrossRefGoogle Scholar
  28. 28.
    Salman, C.A., Schwede, S., Thorin, E., Yan, J.: Predictive modelling and simulation of integrated pyrolysis and anaerobic digestion process. Energy Proc. 105, 850–857 (2017). CrossRefGoogle Scholar
  29. 29.
    Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., Zabaniotou, A.: A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl. Energy 148, 32–38 (2015). CrossRefGoogle Scholar
  30. 30.
    Titiladunayo, I.F., McDonald, A.G., Fapetu, O.P.: Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valori. 3, 311–318 (2012). CrossRefGoogle Scholar
  31. 31.
    Abnisa, F., Arami-Niya, A., Daud, W.W., Sahu, J.N.: Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. BioEnerg. Res. 6, 830–840 (2013). CrossRefGoogle Scholar
  32. 32.
    Mullen, C.A., Boateng, A.A.: Production and analysis of fast pyrolysis oils from proteinaceous biomass. BioEnerg. Res. 4, 303–311 (2011). CrossRefGoogle Scholar
  33. 33.
    Lobato, A., Cuetos, M., Gómez, X., Morán, A.: Improvement of biogas production by co-digestion of swine manure and residual glycerine. Biofuels 1, 59–68 (2010). CrossRefGoogle Scholar
  34. 34.
    Chae, K.J., Jang, A., Yim, S.K., Kim, I.S.: The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99, 1–6 (2008). CrossRefGoogle Scholar
  35. 35.
    Cuetos, M.J., Fernández, C., Gómez, X., Morán, A.: Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 16, 1044–1052 (2011). CrossRefGoogle Scholar
  36. 36.
    Angelidaki, I., Ellegaard, L.: Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Appl. Biochem. Biotechnol. 109, 95–106 (2003). CrossRefGoogle Scholar
  37. 37.
    Sheng, C., Azevedo, J.L.T.: Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenerg. 28, 499–507 (2005). CrossRefGoogle Scholar
  38. 38.
    Gómez, X., Blanco, D., Lobato, A., Calleja, A., Martínez-Núñez, F., Martin-Villacorta, J.: Digestion of cattle manure under mesophilic and thermophilic conditions: characterization of organic matter applying thermal analysis and 1 H NMR. Biodegradation 22, 623–635 (2011). CrossRefGoogle Scholar
  39. 39.
    Açıkalın, K.: Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J. Therm. Anal. Calorim. 109(1), 227–235 (2012). CrossRefGoogle Scholar
  40. 40.
    Ceylan, S., Topçu, Y.: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol. 156, 182–188 (2014). CrossRefGoogle Scholar
  41. 41.
    Idris, S.S., Rahman, N.A., Ismail, K., Alias, A.B., Rashid, Z.A., Aris, M.J.: Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour. Technol. 101, 4584–4592 (2010). CrossRefGoogle Scholar
  42. 42.
    Jayaraman, K., Kok, M.V., Gokalp, I.: Combustion properties and kinetics of different biomass samples using TG–MS technique. J. Therm. Anal. Calorim. 127, 1361–1370 (2017). CrossRefGoogle Scholar
  43. 43.
    Abdelouahed, L., Leveneur, S., Vernieres-Hassimi, L., Balland, L., Taouk, B.: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J. Therm. Anal. Calorim. 129, 1201–1213 (2017). CrossRefGoogle Scholar
  44. 44.
    Otero, M., Sánchez, M.E., Gómez, X.: Co-firing of coal and manure biomass: a TG–MS approach. Bioresour. Technol. 102, 8304–8309 (2011). CrossRefGoogle Scholar
  45. 45.
    Zhang, Q., Chang, J., Wang, T., Xu, Y.: Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 48, 87–92 (2007). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA)Universidad de LeónLeónSpain
  2. 2.Department of Electrical, Systems and Automatic Engineering, School of Electrical, Industrial and InformaticsUniversity of LeónLeónSpain
  3. 3.Centro de Edafología Y Biología Aplicada del Segura, CSICCampus Universitario de EspinardoMurciaSpain

Personalised recommendations