Advertisement

Effect of Antioxidants Extracted from Clove Wastes and Babul Tree Barks on the Oxidation Stability of Biodiesel made from Water Hyacinth of Lake Victoria Origin

  • Emmanuel J. Waweru
  • Tatiana Pogrebnaya
  • Thomas T. KiveveleEmail author
Original Paper
  • 18 Downloads

Abstract

Biodiesel from water hyacinth has shown to have poor oxidative stability due to the presence of significant amounts of unsaturated fatty acids. Most studies have been using synthetic antioxidants to improve oxidation stability of biodiesel but they are expensive and proved to be toxic at higher concentrations. This study assessed the possibility of using natural antioxidants extracted from clove wastes and babul tree barks since they are cheap, easy to extract and locally available and blends of these with synthetic antioxidant such as 1,2,3-trihydroxybenzene (Pyrogallol, PY) in improving the oxidation stability of biodiesel. Non-edible water hyacinth collected from Lake Victoria Tanzania was used as feedstock for biodiesel production. The biodiesel was analyzed for physicochemical properties and fatty acid composition. Most of the physicochemical properties were within the acceptable limits for ASTM D6751 and EN 14214 except for oxidation stability which recorded 2.4 h and was below limits. Fatty acid analysis showed the presence of unsaturated fatty acids at 42% which contributed to the poor oxidation stability of the biodiesel. Clove waste and babul barks displayed significant total phenolic contents of 220.0 ± 0.1 and 48.0 ± 0.2 mg GAE/g, respectively. Clove antioxidant displayed an improvement of 153% in oxidation stability at 1000 ppm while babul improved by 236% at 800 ppm. Blends of clove with PY displayed much higher improvements in oxidation stability by 398% at 800 ppm while babul with pyrogallol showed a general decrease in performance by 46%.

Graphic Abstract

Keywords

Biodiesel Oxidation stability Antioxidants Clove and babul barks 

Notes

Acknowledgements

The authors acknowledge The World Academy of Science (TWAS) for funding this study under Grant Number 17–495 RG/CHE/AF/AC_G – FR3240297727.

Compliance with Ethical Standards

Conflict of interest

We declare no conflict of interest in this work.

References

  1. 1.
    Güereña, D., Neufeldt, H., Berazneva, J., Duby, S.: Water hyacinth control in Lake Victoria: transforming an ecological catastrophe into economic, social, and environmental benefits. Sustain. Prod. 3, 59–69 (2015).  https://doi.org/10.1016/j.spc.2015.06.003 CrossRefGoogle Scholar
  2. 2.
    Rezania, S., Ponraj, M., Din, M.F.M., Songip, A.R., Sairan, F.M., Chelliapan, S.: The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew. Sustain. Energy Rev. 41, 943–954 (2015).  https://doi.org/10.1016/j.rser.2014.09.006 CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, A., Kumar, P.: Water hyacinth as a potential biofuel crop. Electron. J. Environ. Agric. Food Chem. 9(1), 112–122 (2010)Google Scholar
  4. 4.
    Poddar, K., Mandal, L., Banerjee, G.: Studies on water hyacinth(Eichhornia crassipes)- chemical composition of the plant and water from different habitats. Indian Vet. J. 68(9), 833–837 (1991)Google Scholar
  5. 5.
    Gunnarsson, C.C., Petersen, C.M.: Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag. 27(1), 117–129 (2007).  https://doi.org/10.1016/j.wasman.2005.12.011 CrossRefGoogle Scholar
  6. 6.
    Shanab, S.M., Hanafy, E.A., Shalaby, E.A.: Water hyacinth as non-edible source for biofuel production. Waste Biomass Valoriz. 9(2), 255–264 (2018).  https://doi.org/10.1007/s12649-016-9816-6 CrossRefGoogle Scholar
  7. 7.
    Tang, H., Wang, A., Salley, S.O., Ng, K.S.: The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc. 85(4), 373–382 (2008).  https://doi.org/10.1007/s11746-008-1208-z CrossRefGoogle Scholar
  8. 8.
    Taghvaei, M., Jafari, S.M.: Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 52(3), 1272–1282 (2015).  https://doi.org/10.1007/s13197-013-1080-1 CrossRefGoogle Scholar
  9. 9.
    Bouaid, A., Martinez, M., Aracil, J.: Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study. Bioresour. Technol. 100(7), 2234–2239 (2009).  https://doi.org/10.1016/j.biortech.2008.10.045 CrossRefGoogle Scholar
  10. 10.
    Pullen, J., Saeed, K.: An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16(8), 5924–5950 (2012).  https://doi.org/10.1016/j.rser.2012.06.024 CrossRefGoogle Scholar
  11. 11.
    Kivevele, T., Huan, Z.: Review of the stability of biodiesel produced from less common vegetable oils of African origin. S. Afr. J. Sci. 111(9–10), 01–07 (2015).  https://doi.org/10.17159/SAJS.2015/20140434 CrossRefGoogle Scholar
  12. 12.
    Varatharajan, K., Pushparani, D.: Screening of antioxidant additives for biodiesel fuels. Renew. Sustain. Energy Rev. 82, 2017–2028 (2018)CrossRefGoogle Scholar
  13. 13.
    Jain, S., Sharma, M.: Stability of biodiesel and its blends: a review. Renew. Sustain. Energy Rev.14(2), 667–678 (2010).  https://doi.org/10.1016/j.rser.2009.10.011 CrossRefGoogle Scholar
  14. 14.
    Brown, W., Johnson, A., O'Halloran, M.: The effect of the level of dietary fat on the toxicity of phenolic antioxidants. Aust. J. Exper. Biol. Med. Sci. 37(6), 533–547 (1959).  https://doi.org/10.1038/icb.1959.56 CrossRefGoogle Scholar
  15. 15.
    Johnson, A., Hewgill, F.: The effect of the antioxidants, butylated hydroxy anisole, butylated hydroxy toluene and propyl gallate on growth, liver and serum lipids and serum sodium levels of the rat. Aust. J. Exper. Biol. Med. Sci. 39(4), 353–360 (1961).  https://doi.org/10.1038/icb.1961.34 CrossRefGoogle Scholar
  16. 16.
    Feuer, G., Gaunt, I., Golberg, L., Fairweather, F.: Liver response tests. VI. Application to a comparative study of food antioxidants and hepatotoxic agents. Food Cosmet. Toxicol. 3, 457–469 (1965). https://doi.org/10.1016/S0015-6264(65)80132-8.CrossRefGoogle Scholar
  17. 17.
    Cha, Y.N., Bueding, E.: Effect of 2(3)-tert-butyl-4-hydroxyanisole administration on the activities of several hepatic microsomal and cytoplasmic enzymes in mice. Biochem. Pharmacol. 28(12), 1917–1921 (1979).  https://doi.org/10.1016/0006-2952(79)90645-2 CrossRefGoogle Scholar
  18. 18.
    Hansen, E.V., Meyer, O., Olsen, P.: Study on toxicity of butylated hydroxyanisole (BHA) in pregnant gilts and their foetuses. Toxicology 23(1), 79–83 (1982).  https://doi.org/10.1016/0300-483X(82)90043-9 CrossRefGoogle Scholar
  19. 19.
    Milner, S.M.: Effects of the food additive butylated hydroxytoluene on monolayer cultures of primate cells. Nature 216(5115), 557 (1967).  https://doi.org/10.1038/216557a0 CrossRefGoogle Scholar
  20. 20.
    Metcalfe, S.M.: Cell culture as a test system for toxicity. J. Pharm. Pharmacol. 23(11), 817–823 (1971)CrossRefGoogle Scholar
  21. 21.
    Sciorra, L., Kaufmann, B., Maier, R.: The effects of butylated hydroxytoluene on the cell cycle and chromosome morphology of phytohaemagglutinin-stimulated leucocyte cultures. Food Cosmet. Toxicol. 12(1), 33–44 (1974).  https://doi.org/10.1016/0015-6264(74)90320-4 CrossRefGoogle Scholar
  22. 22.
    Bruce, W.R., Heddle, J.A.: The mutagenic activity of 61 agents as determined by the micronucleus, Salmonella, and sperm abnormality assays. Can. J. Genet. Cytol. 21(3), 319–333 (1979).  https://doi.org/10.1139/g79-036 CrossRefGoogle Scholar
  23. 23.
    Degré, R., Saheb, S.A.: Butylated hydroxyanisole as a possible mutagenic agent. FEMS Microbiol. Lett. 14(3), 183–186 (1982).  https://doi.org/10.1111/j.1574-6968.1982.tb08659.x CrossRefGoogle Scholar
  24. 24.
    Wilson, R., DeEds, F.: Feedstuffs antioxidants, toxicity studies on the antioxidant 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline. J. Agric. Food Chem. 7(3), 203–206 (1959).  https://doi.org/10.1021/jf60097a008 CrossRefGoogle Scholar
  25. 25.
    De Sousa, L.S., De Moura, C.V.R., De Oliveira, J.E., De Moura, E.M.: Use of natural antioxidants in soybean biodiesel. Fuel 134, 420–428 (2014).  https://doi.org/10.1016/j.fuel.2014.06.007 CrossRefGoogle Scholar
  26. 26.
    Cortés-Rojas, D.F., de Souza, C.R., Oliveira, W.P.: Clove (Syzygium aromaticum): a precious spice. Asian Pac. J. Trop. Biomed. 4(2), 90–96 (2014)CrossRefGoogle Scholar
  27. 27.
    Jirovetz, L., Buchbauer, G., Stoilova, I., Stoyanova, A., Krastanov, A., Schmidt, E.: Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem. 54(17), 6303–6307 (2006).  https://doi.org/10.1021/jf060608c CrossRefGoogle Scholar
  28. 28.
    Brewer, M.: Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 10(4), 221–247 (2011).  https://doi.org/10.1111/j.1541-4337.2011.00156.x CrossRefGoogle Scholar
  29. 29.
    Khabiruddin, M.: Compositional analysis and antioxidant activity of Acacia nilotica from two locations. Asian J. Chem. 29(4), 888–892 (2017)CrossRefGoogle Scholar
  30. 30.
    Singh, B.N., Singh, B.R., Sarma, B., Singh, H.: Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem. Biol. Interact. 181(1), 20–28 (2009).  https://doi.org/10.1016/j.cbi.2009.05.007 CrossRefGoogle Scholar
  31. 31.
    Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959).  https://doi.org/10.1139/y59-099 CrossRefGoogle Scholar
  32. 32.
    Lee, K.G., Shibamoto, T.: Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem. 74(4), 443–448 (2001). https://doi.org/10.1016/S0308-8146(01)00161-3.CrossRefGoogle Scholar
  33. 33.
    Ismail, A., Marjan, Z.M., Foong, C.W.: Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 87(4), 581–586 (2004)CrossRefGoogle Scholar
  34. 34.
    Sultana, B., Anwar, F., Przybylski, R.: Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 104(3), 1106–1114 (2007). https://doi.org/10.1016/j.foodchem.2007.01.019.CrossRefGoogle Scholar
  35. 35.
    Nabora, C.S., Kingondu, C.K., Kivevele, T.T.: Tamarindus Indica fruit shell ash: a low cost and effective catalyst for biodiesel production from Parinari curatellifolia seeds oil. SN Appl. Sci. 1(3), 253 (2019).  https://doi.org/10.1007/s42452-019-0256-3 CrossRefGoogle Scholar
  36. 36.
    Arayana, G.L., Rao, K.S., Pantulu, A., Thyagarajan, G.J.A.B.: Composition of lipids in roots, stalks, leaves and flowers of Eichhornia crassipes (Mart.) Solms. Aquat. Bot. 20(3–4), 219–227 (1984).CrossRefGoogle Scholar
  37. 37.
    Meira, M., Quintella, C.M., dos Santos Tanajura, A., Da Silva, H.R.G., Fernando, J.D.E.S., da Costa Neto, P.R., Pepe, I.M., Santos, M.A., Nascimento, L.L.: Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration. Talanta 85(1), 430–434 (2011). https://doi.org/10.1016/j.talanta.2011.04.002.CrossRefGoogle Scholar
  38. 38.
    Sukenik, A., Yamaguchi, Y., Livne, A.: Alterations in lipid molecular species of the marine eustigma tophyte Nannochlorosis Sp. 1. J. Phycol. 29(5), 620–626 (1993). https://doi.org/10.1111/j.0022-3646.1993.00620.x.CrossRefGoogle Scholar
  39. 39.
    Mashkor, I.: Evaluation of antioxidant activity of clove (Syzygium aromaticum). Int. J. Chem. Sci. 13, 23–30 (2015)Google Scholar
  40. 40.
    El-Maati, M.F.A., Mahgoub, S.A., Labib, S.M., Al-Gaby, A.M., Ramadan, M.F.: Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 8(4), 494–504 (2016).  https://doi.org/10.1016/j.eujim.2016.02.006 CrossRefGoogle Scholar
  41. 41.
    Atta, E.M., Mohamed, N.H., Abdelgawad, A.A.: Antioxidants: an overview on the natural and synthetic types. Eur. Chem. Bull. 6(8), 365–375 (2017).  https://doi.org/10.17628/ecb.2017.6.374-384 CrossRefGoogle Scholar
  42. 42.
    Nimse, S.B., Pal, D.: Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 5(35), 27986–28006 (2015).  https://doi.org/10.1039/C4RA13315C CrossRefGoogle Scholar
  43. 43.
    Spacino, K.R., da Silva, E.T., Angilelli, K.G., Moreira, I., Galão, O.F., Borsato, D.: Relative protection factor optimisation of natural antioxidants in biodiesel B100. Ind. Crops Prod. 80, 109–114 (2016).  https://doi.org/10.1016/j.indcrop.2015.11.034 CrossRefGoogle Scholar
  44. 44.
    Gregório, A.P.H., Borsato, D., Moreira, I., Silva, E.T., Romagnoli, É.S., Spacino, K.R.: Apparent activation energy and relative protection factor of natural antioxidants in mixture with biodiesel. Biofuels 10(5), 607–614 (2019).  https://doi.org/10.1080/17597269.2017.1332297 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Emmanuel J. Waweru
    • 1
  • Tatiana Pogrebnaya
    • 1
  • Thomas T. Kivevele
    • 1
    Email author
  1. 1.Department of Materials and Energy Science and EngineeringNelson Mandela African Institution of Science and TechnologyArushaTanzania

Personalised recommendations