Advertisement

Eco-Green Conversion of Watermelon Peels to Single Cell Oils Using a Unique Oleaginous Fungus: Lichtheimia corymbifera AH13

  • Amr Hosny Hashem
  • Mohamed Sayed HasaninEmail author
  • Ahmed Mohamed Aly Khalil
  • Waleed Bakry Suleiman
Original Paper
  • 144 Downloads

Abstract

Watermelon peel waste (WPW) is being used for first time in single cell oils (SCOs) production via a promising oleaginous fungus Lichtheimia corymbifera which was isolated from Egyptian ecosystem. Pretreatments of WPW were carried out by mechanical, physical and chemical methods; the most potent pretreatment was selected according to total reducing sugar and total lipid production. Accordingly, the mechanical ptetreatment of WPW was distinctly the best pretreatment method for SCOs production from L. corymbifera. Taguchi design clarified that the most optimal culture conditions were 35 °C and pH 7.0 for 4 days by which the highest potential of SCOs and lipid content was yielded (2.93 gl−1 and 39.56% respectively). Mechanical treatment revealed that the dominant fatty acid was palmitic and oleic acids with 41.98 and 34.65% respectively with appearance of γ linolenic acid (GLA) at low concentration 1.43%. Finally, this study showed that WPW was used as a natural, effective, economic, ecofriendly and integrated substrate without adding any outsource nutrients to produce sustainable SCOs with low cost production.

Graphic Abstract

Keywords

Watermelon peels waste Single cell oils Taguchi design 

Notes

Acknowledgements

The authors express their sincere thanks to Faculty of science (Boyes), Al-Azhar University, Cairo, Egypt for providing the necessary research facilities. The authors would like to acknowledge the facilities available at National Research Centre of Egypt.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Esawy, M.A., et al.: Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydr. Polym. 86(2), 823–830 (2011)CrossRefGoogle Scholar
  2. 2.
    Badr, S.E., et al.: Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat. Prod. Res. 25(16), 1524–1539 (2011)CrossRefGoogle Scholar
  3. 3.
    Baenke, F., et al.: Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis. Models Mech. 6(6), 1353–1363 (2013)CrossRefGoogle Scholar
  4. 4.
    Puri, P., et al.: Contos 788 MJ and Sanyal AJ. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46(789): 1081–1090 (2007)CrossRefGoogle Scholar
  5. 5.
    Gil, A.: Polyunsaturated fatty acids and inflammatory diseases. Biomed. Pharmacother. 56(8), 388–396 (2002)CrossRefGoogle Scholar
  6. 6.
    Tapiero, H., et al.: Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 56(5), 215–222 (2002)CrossRefGoogle Scholar
  7. 7.
    Dutta, A., Sharma-Walia, N.: Curbing lipids: impacts ON cancer and viral infection. Int. J. Mol. Sci. 20(3), 644 (2019)CrossRefGoogle Scholar
  8. 8.
    Na, J.W., Lee, J.-C., Kim, H.-W.: Biodiesel production from waste cooking grease: optimization and comparative productivity assessment. KSCE J. Civ. Eng. 23(3), 1000–1006 (2019)CrossRefGoogle Scholar
  9. 9.
    Qin, L., et al.: From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Biores. Technol. 245, 1507–1519 (2017)CrossRefGoogle Scholar
  10. 10.
    Ratledge, C., Wynn, J.P.: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–52 (2002)CrossRefGoogle Scholar
  11. 11.
    Liang, M.-H., Jiang, J.-G.: Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52(4), 395–408 (2013)CrossRefGoogle Scholar
  12. 12.
    Vivek, N., et al.: Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate–metabolic aspects, challenges and possibilities: an overview. Biores. Technol. 239, 507–517 (2017)CrossRefGoogle Scholar
  13. 13.
    Chiranjeevi, P., Mohan, S.: Optimizing the critical factors for lipid productivity during stress phased heterotrophic microalgae cultivation. Front. Energy Res. 4, 26 (2016)CrossRefGoogle Scholar
  14. 14.
    Enshaeieh, M., et al.: Recycling of lignocellulosic waste materials to produce high-value products: single cell oil and xylitol. Int. J. Environ. Sci. Technol. 12(3), 837–846 (2015)CrossRefGoogle Scholar
  15. 15.
    Wynn, J.P., et al.: Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147(10), 2857–2864 (2001)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Adams, I.P., Ratledge, C.: Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(7), 2013–2025 (2007)CrossRefGoogle Scholar
  17. 17.
    Pinzi, S., et al.: Latest trends in feedstocks for biodiesel production. Biofuels Bioprod. Biorefin. 8(1), 126–143 (2014)CrossRefGoogle Scholar
  18. 18.
    Hasanin, M., et al.: Nano-amino acid cellulose derivatives: Eco-synthesis, characterization, and antimicrobial properties. Int. J. Biol. Macromol. 132, 963–969 (2019)CrossRefGoogle Scholar
  19. 19.
    Hasanin, M.S., et al.: Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatal. Agric. Biotechnol. 17, 160–167 (2019)CrossRefGoogle Scholar
  20. 20.
    Ibrahim, S., El Saied, H., Hasanin, M.: Active paper packaging material based on antimicrobial conjugated nano-polymer/amino acid as edible coating. J. King Saud Univ. Sci. (2018)Google Scholar
  21. 21.
    Youssef, A., et al.: Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon 5(3), e01332 (2019)CrossRefGoogle Scholar
  22. 22.
    Gouda, M.K., Omar, S.H., Aouad, L.M.: Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 24(9), 1703 (2008)CrossRefGoogle Scholar
  23. 23.
    Olkiewicz, M., et al.: Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng. 42, 634–643 (2012)CrossRefGoogle Scholar
  24. 24.
    Basta, A.H., et al.: Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications. Int. J. Biol. Macromol. 107, 1364–1372 (2018)CrossRefGoogle Scholar
  25. 25.
    FAOSTAT. Food and agriculture organization of the United Nations. Statistics division. http://faostat3.fao.org/browse/Q/QC/E/2016. Accessed 2 Mar 2016
  26. 26.
    Tlili, I., et al.: Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. J. Food Compos. Anal. 24(7), 923–928 (2011)CrossRefGoogle Scholar
  27. 27.
    Al-Sayed, H.M.A., Ahmed, A.R.: Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Ann. Agric. Sci. 58(1), 83–95 (2013)CrossRefGoogle Scholar
  28. 28.
    Huang, C., et al.: Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Biores. Technol. 100(19), 4535–4538 (2009)CrossRefGoogle Scholar
  29. 29.
    Fouda, A., et al.: Biodegradation and detoxification of bisphenol-A by filamentous fungi screened from nature. J. Adv. Biol. Biotechnol 2, 123–132 (2015)CrossRefGoogle Scholar
  30. 30.
    Folch, J., Lees, M., Stanley, G.S.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)Google Scholar
  31. 31.
    Mamatha, S.: Polyunsaturated fatty acids (Pufas) OF MUCOR sp. with special reference to gamma linolenic acid (GLA). University of Mysore (2009)Google Scholar
  32. 32.
    Nisha, A., Muthukumar, S.P., Venkateswaran, G.: Safety evaluation of arachidonic acid rich Mortierella alpina biomass in albino rats—a subchronic study. Regul. Toxicol. Pharmacol. 53(3), 186–194 (2009)CrossRefGoogle Scholar
  33. 33.
    Suleiman, W., et al.: Recruitment of Cunninghamella echinulata as an Egyptian isolate to produce unsaturated fatty acids. Res. J. Pharm. Biol. Chem. Sci. 9(1), 764–774 (2018)Google Scholar
  34. 34.
    Mishra, S.K., et al.: Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Biores. Technol. 155, 330–333 (2014)CrossRefGoogle Scholar
  35. 35.
    Khalil, A.M.A., Hashem, A.H.: Morphological changes of conidiogenesis in two aspergillus species. J. Pure Appl. Microbiol. 12(4), 2041–2049 (2018)CrossRefGoogle Scholar
  36. 36.
    Khalil, A.M.A., Hashem, A.H., Abdelaziz, A.M.: Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market. Biocatal. Agric. Biotechnol. 101314 (2019)Google Scholar
  37. 37.
    Knyaz, C., et al.: MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018)CrossRefGoogle Scholar
  38. 38.
    Abdelraof, M., Hasanin, M.S., El-Saied, H.: Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr. Polym. 211, 75–83 (2019)CrossRefGoogle Scholar
  39. 39.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
  40. 40.
    Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Biores. Technol. 97(6), 841–846 (2006)CrossRefGoogle Scholar
  41. 41.
    Bellou, S., et al.: The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J. Biotechnol. 170, 50–59 (2014)CrossRefGoogle Scholar
  42. 42.
    Economou, C.N., et al.: Single cell oil production from rice hulls hydrolysate. Biores. Technol. 102(20), 9737–9742 (2011)CrossRefGoogle Scholar
  43. 43.
    Gardeli, C., et al.: Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J. Appl. Microbiol. 123(6), 1461–1477 (2017)CrossRefGoogle Scholar
  44. 44.
    Batrakov, S.G., et al.: Lipids of the zygomycete Absidia corymbifera F-965. Phytochemistry 65(9), 1239–1246 (2004)CrossRefGoogle Scholar
  45. 45.
    Dey, P., Banerjee, J., Maiti, M.K.: Comparative lipid profiling of two endophytic fungal isolates—Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Biores. Technol. 102(10), 5815–5823 (2011)CrossRefGoogle Scholar
  46. 46.
    Nicol, R.W., Marchand, K., Lubitz, W.D.: Bioconversion of crude glycerol by fungi. Appl. Microbiol. Biotechnol. 93(5), 1865–1875 (2012)CrossRefGoogle Scholar
  47. 47.
    Chaturvedi, S., et al.: Banana peel waste management for single-cell oil production. Energy Ecol. Environ. 3(5), 296–303 (2018)CrossRefGoogle Scholar
  48. 48.
    Bandhu, S., et al.: Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology. SpringerPlus 3(1), 691 (2014)CrossRefGoogle Scholar
  49. 49.
    Shao, Y., et al.: 5-Hydroxymethylfurfural production from watermelon peel by microwave hydrothermal liquefaction. Energy 174, 198–205 (2019)CrossRefGoogle Scholar
  50. 50.
    Mohamed, S.A., et al.: Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J. Microbiol. 51(5), 605–611 (2013)CrossRefGoogle Scholar
  51. 51.
    Chaudhari, S.A., Singhal, R.S.: Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int. J. Biol. Macromol. 79, 398–404 (2015)CrossRefGoogle Scholar
  52. 52.
    Papanikolaou, S., Aggelis, G.: Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur. J. Lipid Sci. Technol. 113(8), 1052–1073 (2011)CrossRefGoogle Scholar
  53. 53.
    Enshaeieh, M., Madani, M., Ghojavand, S.: Optimizing of lipid production in Cryptococcus heimaeyensis through M32 array of Taguchi design. Process Saf. Environ. Prot. 111, 757–765 (2017)CrossRefGoogle Scholar
  54. 54.
    Madani, M., Enshaeieh, M., Abdoli, A.: Single cell oil and its application for biodiesel production. Process Saf. Environ. Prot. 111, 747–756 (2017)CrossRefGoogle Scholar
  55. 55.
    Enshaeieh, M., Nahvi, I., Madani, M.: Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. Int. J. Environ. Sci. Technol. 11(3), 597–604 (2014)CrossRefGoogle Scholar
  56. 56.
    Subhash, G.V., Mohan, S.V.: Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour. Technol. 102(19), 9286–9290 (2011)CrossRefGoogle Scholar
  57. 57.
    Christophe, G., et al.: Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz. Arch. Biol. Technol. 55, 29–46 (2012)CrossRefGoogle Scholar
  58. 58.
    Hu, Q., et al.: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(4), 621–639 (2008)CrossRefGoogle Scholar
  59. 59.
    Athenaki, M., et al.: Lipids from yeasts and fungi: physiology, production and analytical considerations. J. Appl. Microbiol. 124(2), 336–367 (2018)CrossRefGoogle Scholar
  60. 60.
    Silveira, C.M.D., Oliveira, M.D.S., Furlong, E.B.: Conteúdo lipídico e perfil em ácidos graxos de farelos submetidos à fermentação por Aspergillus oryzae em estado Sólido (2010)Google Scholar
  61. 61.
    Fakas, S., et al.: γ-Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Biores. Technol. 99(13), 5986–5990 (2008)CrossRefGoogle Scholar
  62. 62.
    Li, Y., et al.: Identification and functional expression of a Δ9 fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15. J. Mol. Catal. B 56(2), 96–101 (2009)CrossRefGoogle Scholar
  63. 63.
    Gupta, A., et al.: Molecular identification of marine yeast and its spectroscopic analysis establishes unsaturated fatty acid accumulation. J. Biosci. Bioeng. 114(4), 411–417 (2012)CrossRefGoogle Scholar
  64. 64.
    Wolfe, K., et al.: Superstars: assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. Mar. Pollut. Bull. 116(1), 307–314 (2017)CrossRefGoogle Scholar
  65. 65.
    Jakobsson, A., Westerberg, R., Jacobsson, A.: Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45(3), 237–249 (2006)CrossRefGoogle Scholar
  66. 66.
    Naganuma, T., et al.: Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 585(20), 3337–3341 (2011)CrossRefGoogle Scholar
  67. 67.
    Ochsenreither, K., et al.: Production strategies and applications of microbial single cell oils. Front. Microbiol. 7, 1539 (2016)CrossRefGoogle Scholar
  68. 68.
    Chatzifragkou, A., et al.: Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36(2), 1097–1108 (2011)CrossRefGoogle Scholar
  69. 69.
    Ruan, Z., et al.: Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Biores. Technol. 110, 198–205 (2012)CrossRefGoogle Scholar
  70. 70.
    Papanikolaou, S., et al.: Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur. J. Lipid Sci. Technol. 109(11), 1060–1070 (2007)CrossRefGoogle Scholar
  71. 71.
    Zeng, J., et al.: Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Biores. Technol. 128, 385–391 (2013)CrossRefGoogle Scholar
  72. 72.
    Abu, O., et al.: Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Biores. Technol. 72(2), 189–192 (2000)CrossRefGoogle Scholar
  73. 73.
    Economou, C.N., et al.: Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Biores. Technol. 101(4), 1385–1388 (2010)CrossRefGoogle Scholar
  74. 74.
    Enshaeieh, M., et al.: Selection and optimization of single cell oil production from Rodotorula 110 using environmental waste as substrate. J. Cell Mol. Res. 4(2), 68–75 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Cellulose & Paper DepartmentNational Research CentreDokkiEgypt
  3. 3.Biology Department, College of ScienceTaibah UniversityYanbuKingdom of Saudi Arabia

Personalised recommendations