Eco-Green Conversion of Watermelon Peels to Single Cell Oils Using a Unique Oleaginous Fungus: Lichtheimia corymbifera AH13
- 144 Downloads
Abstract
Watermelon peel waste (WPW) is being used for first time in single cell oils (SCOs) production via a promising oleaginous fungus Lichtheimia corymbifera which was isolated from Egyptian ecosystem. Pretreatments of WPW were carried out by mechanical, physical and chemical methods; the most potent pretreatment was selected according to total reducing sugar and total lipid production. Accordingly, the mechanical ptetreatment of WPW was distinctly the best pretreatment method for SCOs production from L. corymbifera. Taguchi design clarified that the most optimal culture conditions were 35 °C and pH 7.0 for 4 days by which the highest potential of SCOs and lipid content was yielded (2.93 gl−1 and 39.56% respectively). Mechanical treatment revealed that the dominant fatty acid was palmitic and oleic acids with 41.98 and 34.65% respectively with appearance of γ linolenic acid (GLA) at low concentration 1.43%. Finally, this study showed that WPW was used as a natural, effective, economic, ecofriendly and integrated substrate without adding any outsource nutrients to produce sustainable SCOs with low cost production.
Graphic Abstract
Keywords
Watermelon peels waste Single cell oils Taguchi designNotes
Acknowledgements
The authors express their sincere thanks to Faculty of science (Boyes), Al-Azhar University, Cairo, Egypt for providing the necessary research facilities. The authors would like to acknowledge the facilities available at National Research Centre of Egypt.
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Esawy, M.A., et al.: Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydr. Polym. 86(2), 823–830 (2011)CrossRefGoogle Scholar
- 2.Badr, S.E., et al.: Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat. Prod. Res. 25(16), 1524–1539 (2011)CrossRefGoogle Scholar
- 3.Baenke, F., et al.: Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis. Models Mech. 6(6), 1353–1363 (2013)CrossRefGoogle Scholar
- 4.Puri, P., et al.: Contos 788 MJ and Sanyal AJ. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46(789): 1081–1090 (2007)CrossRefGoogle Scholar
- 5.Gil, A.: Polyunsaturated fatty acids and inflammatory diseases. Biomed. Pharmacother. 56(8), 388–396 (2002)CrossRefGoogle Scholar
- 6.Tapiero, H., et al.: Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 56(5), 215–222 (2002)CrossRefGoogle Scholar
- 7.Dutta, A., Sharma-Walia, N.: Curbing lipids: impacts ON cancer and viral infection. Int. J. Mol. Sci. 20(3), 644 (2019)CrossRefGoogle Scholar
- 8.Na, J.W., Lee, J.-C., Kim, H.-W.: Biodiesel production from waste cooking grease: optimization and comparative productivity assessment. KSCE J. Civ. Eng. 23(3), 1000–1006 (2019)CrossRefGoogle Scholar
- 9.Qin, L., et al.: From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Biores. Technol. 245, 1507–1519 (2017)CrossRefGoogle Scholar
- 10.Ratledge, C., Wynn, J.P.: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–52 (2002)CrossRefGoogle Scholar
- 11.Liang, M.-H., Jiang, J.-G.: Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52(4), 395–408 (2013)CrossRefGoogle Scholar
- 12.Vivek, N., et al.: Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate–metabolic aspects, challenges and possibilities: an overview. Biores. Technol. 239, 507–517 (2017)CrossRefGoogle Scholar
- 13.Chiranjeevi, P., Mohan, S.: Optimizing the critical factors for lipid productivity during stress phased heterotrophic microalgae cultivation. Front. Energy Res. 4, 26 (2016)CrossRefGoogle Scholar
- 14.Enshaeieh, M., et al.: Recycling of lignocellulosic waste materials to produce high-value products: single cell oil and xylitol. Int. J. Environ. Sci. Technol. 12(3), 837–846 (2015)CrossRefGoogle Scholar
- 15.Wynn, J.P., et al.: Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147(10), 2857–2864 (2001)CrossRefGoogle Scholar
- 16.Zhang, Y., Adams, I.P., Ratledge, C.: Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(7), 2013–2025 (2007)CrossRefGoogle Scholar
- 17.Pinzi, S., et al.: Latest trends in feedstocks for biodiesel production. Biofuels Bioprod. Biorefin. 8(1), 126–143 (2014)CrossRefGoogle Scholar
- 18.Hasanin, M., et al.: Nano-amino acid cellulose derivatives: Eco-synthesis, characterization, and antimicrobial properties. Int. J. Biol. Macromol. 132, 963–969 (2019)CrossRefGoogle Scholar
- 19.Hasanin, M.S., et al.: Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatal. Agric. Biotechnol. 17, 160–167 (2019)CrossRefGoogle Scholar
- 20.Ibrahim, S., El Saied, H., Hasanin, M.: Active paper packaging material based on antimicrobial conjugated nano-polymer/amino acid as edible coating. J. King Saud Univ. Sci. (2018)Google Scholar
- 21.Youssef, A., et al.: Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon 5(3), e01332 (2019)CrossRefGoogle Scholar
- 22.Gouda, M.K., Omar, S.H., Aouad, L.M.: Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 24(9), 1703 (2008)CrossRefGoogle Scholar
- 23.Olkiewicz, M., et al.: Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng. 42, 634–643 (2012)CrossRefGoogle Scholar
- 24.Basta, A.H., et al.: Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications. Int. J. Biol. Macromol. 107, 1364–1372 (2018)CrossRefGoogle Scholar
- 25.FAOSTAT. Food and agriculture organization of the United Nations. Statistics division. http://faostat3.fao.org/browse/Q/QC/E/2016. Accessed 2 Mar 2016
- 26.Tlili, I., et al.: Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. J. Food Compos. Anal. 24(7), 923–928 (2011)CrossRefGoogle Scholar
- 27.Al-Sayed, H.M.A., Ahmed, A.R.: Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Ann. Agric. Sci. 58(1), 83–95 (2013)CrossRefGoogle Scholar
- 28.Huang, C., et al.: Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Biores. Technol. 100(19), 4535–4538 (2009)CrossRefGoogle Scholar
- 29.Fouda, A., et al.: Biodegradation and detoxification of bisphenol-A by filamentous fungi screened from nature. J. Adv. Biol. Biotechnol 2, 123–132 (2015)CrossRefGoogle Scholar
- 30.Folch, J., Lees, M., Stanley, G.S.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)Google Scholar
- 31.Mamatha, S.: Polyunsaturated fatty acids (Pufas) OF MUCOR sp. with special reference to gamma linolenic acid (GLA). University of Mysore (2009)Google Scholar
- 32.Nisha, A., Muthukumar, S.P., Venkateswaran, G.: Safety evaluation of arachidonic acid rich Mortierella alpina biomass in albino rats—a subchronic study. Regul. Toxicol. Pharmacol. 53(3), 186–194 (2009)CrossRefGoogle Scholar
- 33.Suleiman, W., et al.: Recruitment of Cunninghamella echinulata as an Egyptian isolate to produce unsaturated fatty acids. Res. J. Pharm. Biol. Chem. Sci. 9(1), 764–774 (2018)Google Scholar
- 34.Mishra, S.K., et al.: Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Biores. Technol. 155, 330–333 (2014)CrossRefGoogle Scholar
- 35.Khalil, A.M.A., Hashem, A.H.: Morphological changes of conidiogenesis in two aspergillus species. J. Pure Appl. Microbiol. 12(4), 2041–2049 (2018)CrossRefGoogle Scholar
- 36.Khalil, A.M.A., Hashem, A.H., Abdelaziz, A.M.: Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market. Biocatal. Agric. Biotechnol. 101314 (2019)Google Scholar
- 37.Knyaz, C., et al.: MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018)CrossRefGoogle Scholar
- 38.Abdelraof, M., Hasanin, M.S., El-Saied, H.: Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr. Polym. 211, 75–83 (2019)CrossRefGoogle Scholar
- 39.Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
- 40.Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Biores. Technol. 97(6), 841–846 (2006)CrossRefGoogle Scholar
- 41.Bellou, S., et al.: The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J. Biotechnol. 170, 50–59 (2014)CrossRefGoogle Scholar
- 42.Economou, C.N., et al.: Single cell oil production from rice hulls hydrolysate. Biores. Technol. 102(20), 9737–9742 (2011)CrossRefGoogle Scholar
- 43.Gardeli, C., et al.: Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J. Appl. Microbiol. 123(6), 1461–1477 (2017)CrossRefGoogle Scholar
- 44.Batrakov, S.G., et al.: Lipids of the zygomycete Absidia corymbifera F-965. Phytochemistry 65(9), 1239–1246 (2004)CrossRefGoogle Scholar
- 45.Dey, P., Banerjee, J., Maiti, M.K.: Comparative lipid profiling of two endophytic fungal isolates—Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Biores. Technol. 102(10), 5815–5823 (2011)CrossRefGoogle Scholar
- 46.Nicol, R.W., Marchand, K., Lubitz, W.D.: Bioconversion of crude glycerol by fungi. Appl. Microbiol. Biotechnol. 93(5), 1865–1875 (2012)CrossRefGoogle Scholar
- 47.Chaturvedi, S., et al.: Banana peel waste management for single-cell oil production. Energy Ecol. Environ. 3(5), 296–303 (2018)CrossRefGoogle Scholar
- 48.Bandhu, S., et al.: Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology. SpringerPlus 3(1), 691 (2014)CrossRefGoogle Scholar
- 49.Shao, Y., et al.: 5-Hydroxymethylfurfural production from watermelon peel by microwave hydrothermal liquefaction. Energy 174, 198–205 (2019)CrossRefGoogle Scholar
- 50.Mohamed, S.A., et al.: Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J. Microbiol. 51(5), 605–611 (2013)CrossRefGoogle Scholar
- 51.Chaudhari, S.A., Singhal, R.S.: Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int. J. Biol. Macromol. 79, 398–404 (2015)CrossRefGoogle Scholar
- 52.Papanikolaou, S., Aggelis, G.: Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur. J. Lipid Sci. Technol. 113(8), 1052–1073 (2011)CrossRefGoogle Scholar
- 53.Enshaeieh, M., Madani, M., Ghojavand, S.: Optimizing of lipid production in Cryptococcus heimaeyensis through M32 array of Taguchi design. Process Saf. Environ. Prot. 111, 757–765 (2017)CrossRefGoogle Scholar
- 54.Madani, M., Enshaeieh, M., Abdoli, A.: Single cell oil and its application for biodiesel production. Process Saf. Environ. Prot. 111, 747–756 (2017)CrossRefGoogle Scholar
- 55.Enshaeieh, M., Nahvi, I., Madani, M.: Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. Int. J. Environ. Sci. Technol. 11(3), 597–604 (2014)CrossRefGoogle Scholar
- 56.Subhash, G.V., Mohan, S.V.: Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour. Technol. 102(19), 9286–9290 (2011)CrossRefGoogle Scholar
- 57.Christophe, G., et al.: Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz. Arch. Biol. Technol. 55, 29–46 (2012)CrossRefGoogle Scholar
- 58.Hu, Q., et al.: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(4), 621–639 (2008)CrossRefGoogle Scholar
- 59.Athenaki, M., et al.: Lipids from yeasts and fungi: physiology, production and analytical considerations. J. Appl. Microbiol. 124(2), 336–367 (2018)CrossRefGoogle Scholar
- 60.Silveira, C.M.D., Oliveira, M.D.S., Furlong, E.B.: Conteúdo lipídico e perfil em ácidos graxos de farelos submetidos à fermentação por Aspergillus oryzae em estado Sólido (2010)Google Scholar
- 61.Fakas, S., et al.: γ-Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Biores. Technol. 99(13), 5986–5990 (2008)CrossRefGoogle Scholar
- 62.Li, Y., et al.: Identification and functional expression of a Δ9 fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15. J. Mol. Catal. B 56(2), 96–101 (2009)CrossRefGoogle Scholar
- 63.Gupta, A., et al.: Molecular identification of marine yeast and its spectroscopic analysis establishes unsaturated fatty acid accumulation. J. Biosci. Bioeng. 114(4), 411–417 (2012)CrossRefGoogle Scholar
- 64.Wolfe, K., et al.: Superstars: assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. Mar. Pollut. Bull. 116(1), 307–314 (2017)CrossRefGoogle Scholar
- 65.Jakobsson, A., Westerberg, R., Jacobsson, A.: Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45(3), 237–249 (2006)CrossRefGoogle Scholar
- 66.Naganuma, T., et al.: Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 585(20), 3337–3341 (2011)CrossRefGoogle Scholar
- 67.Ochsenreither, K., et al.: Production strategies and applications of microbial single cell oils. Front. Microbiol. 7, 1539 (2016)CrossRefGoogle Scholar
- 68.Chatzifragkou, A., et al.: Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36(2), 1097–1108 (2011)CrossRefGoogle Scholar
- 69.Ruan, Z., et al.: Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Biores. Technol. 110, 198–205 (2012)CrossRefGoogle Scholar
- 70.Papanikolaou, S., et al.: Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur. J. Lipid Sci. Technol. 109(11), 1060–1070 (2007)CrossRefGoogle Scholar
- 71.Zeng, J., et al.: Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Biores. Technol. 128, 385–391 (2013)CrossRefGoogle Scholar
- 72.Abu, O., et al.: Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Biores. Technol. 72(2), 189–192 (2000)CrossRefGoogle Scholar
- 73.Economou, C.N., et al.: Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Biores. Technol. 101(4), 1385–1388 (2010)CrossRefGoogle Scholar
- 74.Enshaeieh, M., et al.: Selection and optimization of single cell oil production from Rodotorula 110 using environmental waste as substrate. J. Cell Mol. Res. 4(2), 68–75 (2013)Google Scholar