Advertisement

Production of Eco-refinery Pulp from Moso Bamboo Using Steam Treatment Followed by Milling Treatment

  • Chikako AsadaEmail author
  • Yumi Sasaki
  • Yoshitoshi Nakamura
Original Paper
  • 57 Downloads

Abstract

In this study, we produced cellulose nanofiber (CNF) from moso bamboo using high-temperature and high-pressure steam treatment combined with the milling treatment. This pretreatment method can be considered as an environmentally friendly method because the treated product contains only wood-derived components and water that generally do not lead to significant corrosion problems and formation of neutralization sludge. The specific tensile strengths of CNF obtained in this work were almost the same values as that of a commercial CNF. Furthermore, an eco-refinery pulp was made of holocellulose and CNF those were obtained from moso bamboo by this pretreatment method and its mechanical strength was evaluated. By changing the steam treatment conditions, it is possible to produce eco-refinery pulp of various specific tensile strengths adapted to the application and purpose.

Graphic Abstract

Keywords

Lignocellulosic waste Cellulose nanofiber Pulp Steam treatment Milling treatment Moso bamboo 

Notes

Acknowledgements

The authors are grateful for the partial support of a Grant-in-Aid for Young Scientists (A) (Grant No. 17H04717) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

  1. 1.
    Turbak, A.F., Snyder, F.W., Sandberg, K.R.J.: Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polm. Sci. A 37, 815–827 (1983)Google Scholar
  2. 2.
    Nogi, M., Yano, H.: Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20(10), 1849–1852 (2008)CrossRefGoogle Scholar
  3. 3.
    Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A.: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1), 162–165 (2009)CrossRefGoogle Scholar
  4. 4.
    Xue, Y., Mou, Z., Xiao, H.: Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 39, 14758–14781 (2017)CrossRefGoogle Scholar
  5. 5.
    Asada, C., Sasaki, C., Suzuki, A., Nakamura, Y.: Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions. Waste Biomass Valoriz. 9(12), 2423–2432 (2018)CrossRefGoogle Scholar
  6. 6.
    Asada, C., Sasaki, C., Uto, Y., Sakafuji, J., Nakamura, Y.: Effect of steam explosion pretreatment with ultra-high temperature and pressure on effective utilization of softwood biomass. Biochem. Eng. J. 60(1), 25–29 (2012)CrossRefGoogle Scholar
  7. 7.
    Suzuki, A., Sasaki, C., Asada, C., Nakamura, Y.: Characterization of cellulose nanofiber from steam-exploded Japanese cedar. BioResources 12(4), 7628–7641 (2017)Google Scholar
  8. 8.
    Llano, T., Alexandri, M., Koutinas, A., Gardeli, Chr., Papapostolou, H., Coz, A., Quijorna, N., Andres, A., Komaitis, M.: Liquid–liquid extraction of phenolic compounds from spent sulphite liquor. Waste Biomass Valoriz. 6, 1149–1159 (2015)CrossRefGoogle Scholar
  9. 9.
    Asada, C., Sasaki, C., Takamatsu, T., Nakamura, Y.: Conversion of steam-exploded cedar into ethanol using simultaneous saccharification, fermentation and detoxification process. Bioresour. Technol. 176, 203–209 (2015)CrossRefGoogle Scholar
  10. 10.
    Asada, C., Sasaki, C., Hirano, T., Nakamura, Y.: Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood. Bioresour. Technol. 182, 245–250 (2015)CrossRefGoogle Scholar
  11. 11.
    Suzuki, A., Sasaki, C., Asada, C., Nakamura, Y.: Production of cellulose nanofibers from Aspen and Bode chopsticks using a high temperature and high pressure steam treatment combined with milling. Carbohydr. Polym. 194, 303–310 (2018)CrossRefGoogle Scholar
  12. 12.
    JIS P8215: Cellulose in dilute solutions—determination of limiting viscosity number—method in cupri-ethylene-diamine (CED) solution. Japanese Industrial Standards, Tokyo, Japan (1998)Google Scholar
  13. 13.
    Pelaez-Samaniego, M.R., Englund, K.R.: Production of sugars from wood waste materials via enzymatic hydrolysis. Waste Biomass Valoriz. 8, 883–892 (2017)CrossRefGoogle Scholar
  14. 14.
    Asada, C., Sasaki, C., Nakamura, Y.: High concentration ethanol production from mixed softwood sawdust waste. Waste Biomass Valoriz. 10, 433–439 (2019)CrossRefGoogle Scholar
  15. 15.
    Asada, C., Basnet, S., Otsuka, T., Sasaki, C., Nakamura, Y.: Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int. J. Biol. Macromol. 74, 413–419 (2015)CrossRefGoogle Scholar
  16. 16.
    Ryu, D.D.Y., Lee, S., Tassinari, T., Macy, C.: Effect of compression milling on cellulose structure and on enzymatic hydrolysis kinetics. Biotechnol. Bioeng. 24(5), 1047–1067 (1982)CrossRefGoogle Scholar
  17. 17.
    Nair, S.S., Yan, N.: Bark derived submicron-sized and nano-sized cellulose fibers: from industrial waste to high performance materials. Carbohydr. Polym. 134, 258–266 (2015)CrossRefGoogle Scholar
  18. 18.
    Bhardwaj, N.K.: Refining of bamboo long fiber fraction pulp: effects on wet web and dry strength properties of paper. Cellulose Chem. Technol. 53(1–2), 113–120 (2019)CrossRefGoogle Scholar
  19. 19.
    Wan Rosli, W.D., Mazlan, I., Law, K.N.: Effects of kraft pulping variables on pulp and paper properties of Acacia mangium kraft pulp. Cellulose Chem. Technol. 43(1–3), 9–15 (2009)Google Scholar
  20. 20.
    Sasaki, C., Wanaka, M., Takagi, H., Tamura, S., Asada, C., Nakamura, Y.: Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Ind. Crop. Prod. 43, 757–761 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Bioscience and BioindustryTokushima UniversityTokushimaJapan
  2. 2.Department of Biological Science and TechnologyTokushima UniversityTokushimaJapan

Personalised recommendations