Advertisement

Novel Routes for Valorisation of Grape Pomace Through the Production of Bioactives by Aspergillus niger

  • María-Rocío MeiniEmail author
  • Laura L. Ricardi
  • Diana Romanini
Original Paper
  • 33 Downloads

Abstract

Grape pomace is an abundant winery by-product produced worldwide, which contains a high concentration of polyphenols trapped in cell wall fibers. The fungus tannase enzyme finds many applications in the industry, but its use is currently limited. This is due to its high production cost derived from tannic acid, which is the typical inductor of tannase enzyme by Aspergillus species. Therefore, assessment of natural tannin sources as inductors is a strategy to overcome this limitation. We propose here to employ the red grape pomace, which is a rich source of tannins and polyphenols. We found that, although grape pomace is not able to induce tannase by itself, it is a useful complement for tannic acid induction, reducing the concentration of tannic acid necessary to achieve maximum levels of tannase induction, which ranged between 3.0 and 4.5 U/mL. We also explored the potential usage of this biomass to induce other relevant industrial enzymes and quantified the recovery of gallic acid from grape pomace by the fungus fermentation; finding new routes for this by-product valorisation.

Graphic Abstract

Keywords

Tannase Grape pomace Aspergillus niger Industrial enzymes Gallic acid 

Notes

Acknowledgements

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT-2016-4463 and PICT-2016-1170). The authors would like to thank BordeRío Bodega & Viñedos, AER INTA-Victoria, and Bodegas Salentein, Argentina for supplying the grape pomace.

References

  1. 1.
    Zacharof, M.-P.: Grape winery waste as feedstock for bioconversions: applying the biorefinery concept. Waste Biomass Valor. 8, 1011–1025 (2017).  https://doi.org/10.1007/s12649-016-9674-2 CrossRefGoogle Scholar
  2. 2.
    Fontana, A.R., Antoniolli, A., Bottini, R.: Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J Agric. Food Chem. 61, 8987–9003 (2013).  https://doi.org/10.1021/jf402586f CrossRefGoogle Scholar
  3. 3.
    Belur, P.D., Mugeraya, G.: Microbial production of tannase: state of the art. Res. J. Microbiol. 6, 25–40 (2011).  https://doi.org/10.3923/jm.2011.25.40 CrossRefGoogle Scholar
  4. 4.
    Boadi, D.K., Neufeld, R.J.: Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb. Technol. 28, 590–595 (2001)CrossRefGoogle Scholar
  5. 5.
    Lekha, P.K., Ramakrishna, M., Lonsane, B.K.: Strategies for the isolation of potent fungal cultures capable of producing tannin acyl hydrolase in higher titres. Chem. Mikrobiol. Technol. Lebensm. 15, 5–10 (1993)Google Scholar
  6. 6.
    Belmares, R., Contreras-Esquivel, J.C., Rodrı́guez-Herrera, R., Coronel, A.R., Aguilar, C.N.: Microbial production of tannase: an enzyme with potential use in food industry. LWT Food Sci. Technol. 37, 857–864 (2004).  https://doi.org/10.1016/j.lwt.2004.04.002 CrossRefGoogle Scholar
  7. 7.
    Deschamps, A.M., Lebeault, J.-M.: Production of gallic acid from tara tannin by bacterial strains. Biotechnol. Lett. 6, 237–242 (1984).  https://doi.org/10.1007/BF00140043 CrossRefGoogle Scholar
  8. 8.
    Murugan, K., Al-Sohaibani, S.A.: Biocompatible removal of tannin and associated color from tannery effluent using the biomass and tannin acyl hydrolase (E.C.3.1.1.20) enzymes of mango industry solid waste isolate Aspergillus candidus MTTC 9628. Res. J. Microbiol. 5, 262–271 (2010).  https://doi.org/10.3923/jm.2010.262.271 CrossRefGoogle Scholar
  9. 9.
    Abdulla, J., Rose, S.P., Mackenzie, A.M., Mirza, W., Pirgozliev, V.: Exogenous tannase improves feeding value of a diet containing field beans (Vicia faba) when fed to broilers. Br. Poult. Sci. 57, 246–250 (2016).  https://doi.org/10.1080/00071668.2016.1143551 CrossRefGoogle Scholar
  10. 10.
    Aboubakr, H.A., El-Sahn, M.A., El-Banna, A.A.: Some factors affecting tannase production by Aspergillus niger Van Tieghem. Braz. J. Microbiol. 44, 559–567 (2013).  https://doi.org/10.1590/S1517-83822013000200036 CrossRefGoogle Scholar
  11. 11.
    Sabu, A., Pandey, A., Daud, M.J., Szakacs, G.: Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour. Technol. 96, 1223–1228 (2005).  https://doi.org/10.1016/j.biortech.2004.11.002 CrossRefGoogle Scholar
  12. 12.
    Treviño-Cueto, B., Luis, M., Contreras-Esquivel, J.C., Rodríguez, R., Aguilera, A., Aguilar, C.N.: Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov.). Bioresour. Technol. 98, 721–724 (2007).  https://doi.org/10.1016/j.biortech.2006.02.015 CrossRefGoogle Scholar
  13. 13.
    Kumar, R., Sharma, J., Singh, R.: Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiol. Res. 162, 384–390 (2007).  https://doi.org/10.1016/j.micres.2006.06.012 CrossRefGoogle Scholar
  14. 14.
    Sharma, N.K., Beniwal, V., Kumar, N., Kumar, S., Pathera, A.K., Ray, A.: Production of tannase under solid-state fermentation and its application in detannification of guava juice. Prep. Biochem. Biotechnol. 44, 281–290 (2014).  https://doi.org/10.1080/10826068.2013.812566 CrossRefGoogle Scholar
  15. 15.
    Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)Google Scholar
  16. 16.
    Hagerman, A.E., Butler, L.G.: Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26, 809–812 (1978).  https://doi.org/10.1021/jf60218a027 CrossRefGoogle Scholar
  17. 17.
    AOAC International: AOAC: Official methods of analysis (vol 1). https://archive.org/details/gov.law.aoac.methods.1.1990. (1990)
  18. 18.
    ANKOM Technology: Neutral detergent fiber in feeds—method 6 (2011)Google Scholar
  19. 19.
    ANKOM Technology: Acid detergent fiber in feeds—method 5 (2011)Google Scholar
  20. 20.
    ANKOM Technology: Acid detergent lignin—PROMEFA V2 protocol (2005)Google Scholar
  21. 21.
    Mangrola, A.V., Patel, H.V., Chudasama, C.J., Vavadia, C.N., Shah, H.: Optimization of cultural conditions for tannase production in submerged fermentation by Aspergillus niger avm-1. Pharm. Res. 8Google Scholar
  22. 22.
    Sharma, S., Bhat, T.K., Dawra, R.K.: A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 279, 85–89 (2000).  https://doi.org/10.1006/abio.1999.4405 CrossRefGoogle Scholar
  23. 23.
    Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C.: Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985).  https://doi.org/10.1016/0003-2697(85)90442-7 CrossRefGoogle Scholar
  24. 24.
    Brown, R.E., Jarvis, K.L., Hyland, K.J.: Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal. Biochem. 180, 136–139 (1989)CrossRefGoogle Scholar
  25. 25.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).  https://doi.org/10.1021/ac60147a030 CrossRefGoogle Scholar
  26. 26.
    Gupta, M.N., Dong, G., Mattiasson, B.: Purification of endo-polygalacturonase by affinity precipitation using alginate. Biotechnol. Appl. Biochem. 18(Pt 3), 321–327 (1993)Google Scholar
  27. 27.
    Ncube, T., Howard, R.L., Abotsi, E.K., van Rensburg, E.L.J., Ncube, I.: Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind. Crops Prod. 37, 118–123 (2012).  https://doi.org/10.1016/j.indcrop.2011.11.024 CrossRefGoogle Scholar
  28. 28.
    Porfiri, M.C., Farruggia, B.M., Romanini, D.: Bioseparation of alpha-amylase by forming insoluble complexes with polyacrylate from a culture of Aspergillus oryzae grown in agricultural wastes. Sep. Purif. Technol. 92, 11–16 (2012).  https://doi.org/10.1016/j.seppur.2012.03.004 CrossRefGoogle Scholar
  29. 29.
    Lekha, P.K., Lonsane, B.K.: Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface an submerged fermentations. Process Biochem. 29, 497–503 (1994).  https://doi.org/10.1016/0032-9592(94)85019-4 CrossRefGoogle Scholar
  30. 30.
    Bradoo, S., Gupta, R., Saxena, R.K.: Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Process Biochem. 32, 135–139 (1997)CrossRefGoogle Scholar
  31. 31.
    Sharma, S., Agarwal, L., Saxena, R.K.: Statistical optimization for tannase production from Aspergillus niger under submerged fermentation. Indian J. Microbiol. 47, 132–138 (2007).  https://doi.org/10.1007/s12088-007-0026-6 CrossRefGoogle Scholar
  32. 32.
    Darah, I., Sumathi, G., Jain, K., Hong, L.S.: Involvement of physical parameters in medium improvement for tannase production by Aspergillus niger FETL FT3 in submerged fermentation. Biotechnol. Res. Int. 2011, 897931 (2011)CrossRefGoogle Scholar
  33. 33.
    Aissam, H., Errachidi, F., Penninckx, M.J., Merzouki, M., Benlemlih, M.: Production of tannase by Aspergillus niger HA37 growing on tannic acid and olive mill waste waters. World J. Microbiol. Biotechnol. 21, 609–614 (2005)CrossRefGoogle Scholar
  34. 34.
    Aguilar, C.N., Augur, C., Favela-Torres, E., Viniegra-González, G.: Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J. Ind. Microbiol. Biotechnol. 26, 296–302 (2001)CrossRefGoogle Scholar
  35. 35.
    Favela-Torres, E., Cordova-López, J., García-Rivero, M., Gutiérrez-Rojas, M.: Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations. Process Biochem. 33, 103–107 (1998).  https://doi.org/10.1016/S0032-9592(97)00032-0 CrossRefGoogle Scholar
  36. 36.
    Yadav, K.K., Garg, N., Kumar, D., Kumar, S., Singh, A., Muthukumar, M.: Application of response surface methodology for optimization of polygalacturonase production by Aspergillus niger. J. Environ. Biol. 36, 255–259 (2015)Google Scholar
  37. 37.
    Barman, S., Sit, N., Badwaik, L.S., Deka, S.C.: Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J. Food Sci. Technol. 52, 3579–3589 (2015).  https://doi.org/10.1007/s13197-014-1413-8 CrossRefGoogle Scholar
  38. 38.
    Dias, L.M., Dos Santos, B.V., Albuquerque, C.J.B., Baeta, B.E.L., Pasquini, D., Baffi, M.A.: Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. J. Appl. Microbiol. 124, 708–718 (2018).  https://doi.org/10.1111/jam.13672 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR)RosarioArgentina
  2. 2.Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas. UNRRosarioArgentina
  3. 3.Departamento de Tecnología, Facultad de Ciencias Bioquímicas Y Farmacéuticas. UNRRosarioArgentina

Personalised recommendations