Improved Methane Production Using Lignocellulolytic Enzymes from Trichoderma koningiopsis TM3 Through Co-digestion of Palm Oil Mill Effluent and Oil Palm Trunk Residues

  • Tanawut Nutongkaew
  • Poonsuk PrasertsanEmail author
  • Sompong O-Thong
  • Sukonlarat Chanthong
  • Wasana Suyotha
Original Paper


The efficacy of concentrated enzymes from Trichoderma koningiopsis TM3 in hydrolyzing palm oil mill effluent (POME) and oil palm trunk residues (OPTr) at 40 and 50 °C was evaluated prior to methane fermentation. POME hydrolysate containing total sugar concentration of 15.40 g L−1 was obtained from enzymatic hydrolysis using 15 Unit g−1 TVS at 50 °C for 18 h incubation with the hydrolysis yield of 0.35 g total sugars g−1 TVS. The OPTr hydrolysate contained slightly higher total sugar concentration (18.90 g L−1) with the hydrolysis yield of 0.85 g total sugars g−1 TVS under the same condition. Methane production from POME hydrolysate was 6.29% higher than the raw POME. Co-digestion of POME hydrolysate with OPTr gave the maximum methane yield (369 ml CH4 g−1 VS-added) with the increase of 9.28% compared to the raw POME. The methane production rate (Rmax) and the hydrolysis rate constant (kh) of the co-digestion of POME hydrolysate with OPTr were 1.2-fold higher than those of the POME hydrolysate. PCR-DGGE analysis revealed that Clostridium sp. and Petrimonas sp. were dominated bacteria while Methanosarcina sp. and Methanospirillum sp. played an important role in methane production. These results indicated that enzymatic pretreatment and co-digestion of POME hydrolysate with OPTr could improve methane yield from anaerobic fermentation of POME.

Graphic Abstract


Enzymatic hydrolysis Methane production Co-digestion Palm oil mill effluent Oil palm trunk residues Microbial community 



This research work was financially supported by Agricultural Research Development Agency (ARDA) (Grant No. CRP5605021180), Thailand Research Fund (Grant No. RTA6080010) and the PSU-Ph.D. Scholarship, Graduate School, Prince of Songkla University.


  1. 1.
    Prasertsan, S., Prasertsan, P.: Biomass residues from palm oil mills in Thailand: an overview on quantity and potential usage. Biomass Bioenergy 11, 387–395 (1996)CrossRefGoogle Scholar
  2. 2.
    O-Thong, S., Boe, K., Angelidaki, I.: Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl. Energy 93, 648–654 (2012)CrossRefGoogle Scholar
  3. 3.
    Noparat, P., Prasertsan, P., O-Thong, S.: Potential for using enriched cultures and thermotolerant bacteria isolates for production of biohydrogen from oil palm sap and microbial community analysis. Int. J. Hydrogen Energy 37, 16412–16420 (2012)CrossRefGoogle Scholar
  4. 4.
    Kelly-Yong, T.L., Lee, K.T., Mohamed, A.R., Bhatia, S.: Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35, 5692–5701 (2007)CrossRefGoogle Scholar
  5. 5.
    Noparat, P., Prasertsan, P., O-Thong, S.: Isolation and characterization of high hydrogen-producing strain Clostridium beijerinckii PS-3 from fermented oil palm sap. Int. J. Hydrogen Energy 36, 14086–14092 (2011)CrossRefGoogle Scholar
  6. 6.
    Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48, 1293–1302 (2013)CrossRefGoogle Scholar
  7. 7.
    Chew, T.L., Subhash, B.: Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour. Technol. 99, 7911–7922 (2008)CrossRefGoogle Scholar
  8. 8.
    Oswal, N., Sarma, P.M., Zinjarde, S.S., Pant, A.: Palm oil mill effluent treatment by tropical marine yeast. Bioresour. Technol. 85, 35–37 (2002)CrossRefGoogle Scholar
  9. 9.
    Basri, M.F., Yacob, S., Hassan, M.A., Shirai, Y., Wakisaka, M., Zakarai, M.R.: Improve biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process. World J. Microbiol. Biotechnol. 26, 505–514 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, H., Liu, L., Yang, X., Li, Z.: New process of maize stalks amination treatment by steam explosion. Biomass Bioenergy 28, 411–417 (2005)CrossRefGoogle Scholar
  11. 11.
    Bruni, E., Jensen, A.P., Angelidaki, I.: Steam treatment of digested biofibers for increasing biogas production. Bioresour. Technol. 101, 668–671 (2010)CrossRefGoogle Scholar
  12. 12.
    Hartmann, H., Angelidaki, I., Ahring, B.K.: Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci. Technol. 41, 145–153 (2000)CrossRefGoogle Scholar
  13. 13.
    Zieminski, K., Romanowska, I., Kowalska, M.: Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 32, 1131–1137 (2012)CrossRefGoogle Scholar
  14. 14.
    Prasertsan, P., Khangkhachit, W., Duangsuwan, W., Mamimin, C., O-Thong, S.: irect hydrolysis of palm oil mill effluent by xylanase enzyme to enhance biogas production using two-steps thermophilic fermentation under non-sterile condition. Int. J. Hydrogen Energy 42, 27759–27766 (2017)CrossRefGoogle Scholar
  15. 15.
    Ortega, N., Busto, M.D., Perez-Mateo, S.M.: Kinetics of cellulose saccharification by Trichoderma reesei cellulase. Int. Biodeterior. Biodegrad. 47, 7–14 (2001)CrossRefGoogle Scholar
  16. 16.
    Mun, W.K., Rahman, N.A.A., Abd-Aziz, S., Sabaratnam, V., Hassan, M.A.: Enzymatic hydrolysis of palm oil mill effluent solid using mixed cellulases from locally isolated fungi. Res. J. Microbiol. 3, 474–481 (2008)CrossRefGoogle Scholar
  17. 17.
    Mata-Alvarez, J., Dosta, J., Romeo-Guiza, M.S., Fonoll, X., Peces, M., Astals, S.: A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014)CrossRefGoogle Scholar
  18. 18.
    Rodger, B.B., Laura, B., American Public Health Association.; American Water Works Association.; Water Environment Federation: Standard Method for the Examination of Water and Wastewater, 18th edn. American Public Health Association, New York (1988)Google Scholar
  19. 19.
    Nutongkaew, T., Prasertsan, P., Leamdum, C., Sattayasamitsathit, S., Noparat, P.: Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation. Waste Biomass Valoriz (2019). CrossRefGoogle Scholar
  20. 20.
    Prasertsan, P., H-Kittikul, A., Kunghae, A., Maneesri, J., Oi, S.: Optimization for xylanase and cellulase production from Aspergillus niger ATCC 6275 in palm oil mill wastes and its application. World J. Microbiol. Biotechnol. 13, 555–559 (1997)CrossRefGoogle Scholar
  21. 21.
    Prasertsan, P., Kittikun, A., Chantapaso, S.: Factors affecting treatment of palm oil mill effluent by enzyme from Aspergillus niger ATCC 6275 cultivated on palm cake. Songklanakarin J. Sci. Technol. 23, 797–806 (2001)Google Scholar
  22. 22.
    Prasertsan, P., Oi, S.: Production of cellulolytic enzymes from fungi and use in the saccharification of palm cake and palm fibre. World J. Microbiol. Biotechnol. 8, 536–538 (1992)CrossRefGoogle Scholar
  23. 23.
    Bailey, M.J., Peter, B., Kaisa, P.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270 (1992)CrossRefGoogle Scholar
  24. 24.
    Ncube, T., Howard, R.L., Abotsi, E.K., van Rensburg, E.L.J., Ncube, I.: Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind. Crop Prod. 37, 118–123 (2012)CrossRefGoogle Scholar
  25. 25.
    Adeleke, E.O., Omafuvbe, B.O., Adewale, I.O., Bakara, M.K.: Purification and characterization of a cellulase obtained from cocoa (Theobroma cacao) pod-degrading Bacillus coagulans Co4. Turk. J. Biochem. 37, 222–230 (2012)CrossRefGoogle Scholar
  26. 26.
    Chen, M., Zhao, J., Xia, L.: Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy 33, 1381–1385 (2009)CrossRefGoogle Scholar
  27. 27.
    Zulkefli, S., Abdulmalek, E., Rahman, M.B.A.: Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew Energy 107, 36–44 (2017)CrossRefGoogle Scholar
  28. 28.
    Zhen, G., Lu, X., Kobayashi, T., Kumar, X.K.: Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food wastes kinetic modeling and synergistic impact evaluation. Chem. Eng. J. 299, 332–341 (2016)CrossRefGoogle Scholar
  29. 29.
    Kongjan, P., O-Thong, S., Angelidaki, I.: Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour. Technol. 102, 4028–4035 (2011)CrossRefGoogle Scholar
  30. 30.
    Mamimin, C., Singklala, A., Kongjan, P., Suraraksa, B., Prasertsan, P., Imai, T., O-Thong, S.: Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int. J. Hydrogen Energy 40, 6319–63298 (2015)CrossRefGoogle Scholar
  31. 31.
    Hniman, A., O-Thong, S., Prasertsan, P.: Developing a thermophilic hydrogen producing microbial consortia from geothermal spring for efficient utilization of xylose and glucose mixed substrates and oil palm trunk hydrolysate. Int. J. Hydrogen Energy 36, 8785–8793 (2011)CrossRefGoogle Scholar
  32. 32.
    Yossan, S., O-Thong, S., Prasertsan, P.: Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. Int. J. Hydrogen. Energy 37, 13806–13814 (2012)CrossRefGoogle Scholar
  33. 33.
    Lam, M.K., Lee, K.T.: Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection. Biotechnol. Adv. 29, 124–141 (2011)CrossRefGoogle Scholar
  34. 34.
    Hamzha, F., Idris, A., Shuan, T.K.: Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulose and β 1-4 glucosidase. Biomass Bioenergy 35, 1055–1059 (2013)CrossRefGoogle Scholar
  35. 35.
    Qiu, G.M., Aita, M., Walker, S.: Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 117, 251–256 (2012)CrossRefGoogle Scholar
  36. 36.
    Ramachandriya, K.D., Wilkins, M.R., Hiziroglu, S., Atiyeh, H.K.: Development of an efficient pretreatment process for enzymatic saccharification of Eastern redcedar. Bioresour. Technol. 136, 131–139 (2013)CrossRefGoogle Scholar
  37. 37.
    Fang, C., O-Thong, S., Boe, K., Angelidaki, I.: Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME). J. Hazard Mater. 189, 229–234 (2011)CrossRefGoogle Scholar
  38. 38.
    Saelor, S., Kongjan, P., O-Thong, S.: Biogas production from anaerobic co-digestion of palm oil mill effluent and empty fruit bunches. Energy Procedia 138, 717–722 (2017)CrossRefGoogle Scholar
  39. 39.
    Suksong, W., Kongjan, P., O-Thong, S.: Biohythane production from co-digestion of palm oil mill effluent with solid residues by two-stage solid state anaerobic digestion process. Energy Procedia 79, 943–947 (2015)CrossRefGoogle Scholar
  40. 40.
    Kim, S.H., Choi, S.M., Ju, H.J., Jung, J.Y.: Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches. Environ. Technol. 34, 2163–2170 (2013)CrossRefGoogle Scholar
  41. 41.
    Yu, Y., Park, B., Hwang, S.: Co-digestion of lignocellulosics with glucose using thermophilic acidogens. Biochem. Eng. J. 18, 225–229 (2004)CrossRefGoogle Scholar
  42. 42.
    Vivekanand, V., Mulat, D.G., Eijsink, V.G.H., Horn, S.J.: Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour. Technol. 249, 35–41 (2018)CrossRefGoogle Scholar
  43. 43.
    Shukor, M.Y., Hassan, N.A.A., Jusoh, A.Z., Perumal, N., Shamaan, N.A., MacCormack, W.P., Syed, M.A.: Isolation and Characterization of a Pseudomonas Diesel Degrading Strain from Antartica. J. Environ. Biol. 30, 1–6 (2009)Google Scholar
  44. 44.
    Gopinath, L.R., Gehitha, T.R., Bhuvaneswari, R., Archaya, S., Merlin, C.P.: Hydrocarbon degradation and biogas production efficiency of bacteria isolated from petrol polluted soil. Res. J. Recent Sci. 4, 60–67 (2015)Google Scholar
  45. 45.
    Ekperigin, M.M.: Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr. J. Biotechnol. 6, 028–033 (2007)Google Scholar
  46. 46.
    Potivichayanon, S., Pokethitiyook, P., Kruatrachue, M.: Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem. 41, 708–715 (2006)CrossRefGoogle Scholar
  47. 47.
    Ku, S.C., Hsueh, P.R., Yang, P.C., Luh, K.T.: Clinical and microbiological characteristics of bacteremia caused by Acinetobacter lwoffii. Eur. J. Clin. Microbiol. Infect. Dis. 19, 501–505 (2000)CrossRefGoogle Scholar
  48. 48.
    Gao, R., Cao, Y., Yuan, X., Zhu, W., Wang, X., Cui, Z.: Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater. Afr. J. Biotechnol. 11, 6494–6500 (2012)Google Scholar
  49. 49.
    Grabowaski, A., Tindall, B.J., Bardin, V., Blanchet, D., Jeanthon, C.: Petrimonas sulfuriphila gen. nov., sp. nov., amesophilic fermentative bacterium isolatedfrom a biodegraded oil reservoir. Int. J. Syst. Evol. Microb. 55, 113–1121 (2005)Google Scholar
  50. 50.
    Ikegami, K., Aita, Y., Shiroma, A., Shimogi, M., Tamotsu, H., Ashimine, N., Shinzato, M., Ohki, S., Nakano, K., Teruya, K., Satou, K., Hirano, T., Yohda, M.: Complete genome sequence of Petrimonas sp. strain IBARAKI, assembled from the metagenome data of a culture containing Dehalococcoides spp. Genome Announc. 6(18), e00384 (2018)CrossRefGoogle Scholar
  51. 51.
    Karakashev, D., Batstone, D.J., Angelidaki, I.: Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71, 331–338 (2005)CrossRefGoogle Scholar
  52. 52.
    Galagan, J.E., Nusbaum, C., Roy, A., Endrizzi, M.G., MacDonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., McEwan, P., McKernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer, A., Barber, R.D., Cann, I., Graham, D.E., Grahame, D.A., Guss, A.M., Hedderich, R., Ingram-Smith, C.: The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome. Res. 12, 532–542 (2002)CrossRefGoogle Scholar
  53. 53.
    Shin, S.G., Han, G., Lim, J., Lee, C., Hwang, S.: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Res. 44, 4838–4849 (2010)CrossRefGoogle Scholar
  54. 54.
    Lino, T., Mori, K., Suzuki, K.I.: Methanospirillum lacunae methaneproducing archaeon isolate from a puddly soil, and emened descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 60, 2563–2566 (2010)CrossRefGoogle Scholar
  55. 55.
    Stewart, L.C., Jung, J.H., Kim, Y.T., Kwon, S.W., Park, C.S., Holden, J.F.: Methanocaldococcus bathoardescens sp. nov., ahyperthermophilic methanogen isolated from a volcanicallyactive deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 65, 1280–1283 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tanawut Nutongkaew
    • 1
  • Poonsuk Prasertsan
    • 2
    Email author
  • Sompong O-Thong
    • 3
  • Sukonlarat Chanthong
    • 1
  • Wasana Suyotha
    • 1
  1. 1.Department of Industrial Biotechnology, Faculty of Agro-IndustryPrince of Songkla UniversitySongkhlaThailand
  2. 2.Research and Development OfficePrince of Songkla UniversitySongkhlaThailand
  3. 3.Department of Biology, Faculty of ScienceThaksin UniversityPhatthalungThailand

Personalised recommendations